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III Year B.Tech I Sem        L T/P/D C 
                       3  1/-/- 3 
     CORE ELECTIVE-I 
                                               (R15A0411)DIGITAL SYSTEM DESIGN 
 
 
OBJECTIVES:  
This course provides in depth knowledge digital system design of digital circuits, which is the 
basis for design of any digital circuit. The main objectives are:  

 To design and analysis of sequential circuits.   
 To impart to student the concepts of sequential circuits, enabling them to analyze 

sequential systems in terms of state machines.   
 To understand about the SM charts and their realization  

 To implement synchronous state machines using flip-flops.  

 To detect the fault models in sequential circuits.  
 
UNIT -I: Minimization and Transformation of Sequential Machines: The Finite State Model – 
Capabilities and limitations of FSM –State equivalence and machine minimization – 
Simplification of incompletely specified machines-Merger chart methods-Concept of Minimal 
Cover Table-Compatibility Graph. 

UNIT -II: Fundamental mode model –Flow table –State reduction –Excitation and output 
Tables-Primitive Flow Table-Hazards-Design of Hazard free circuits. 

UNIT III: Digital Design: Digital Design Using ROMs, PALs, BCD Adder, 32 –bit adder-PLA-PLA 
minimization-PLA Folding-Simple column folding-Problems. 

UNIT -IV: Faults in Digital Circuits: Failures and Faults-Modelling of Faults-Single stuck at 
fault model –Multiple stuck at fault models –Stuck Open Faults-Bridging fault model. Fault 
diagnosis of combinational circuits by conventional methods –Path sensitization techniques, 
Boolean Difference method –Kohavi algorithm-examples. 

UNIT -V: SM Charts: State machine charts, Derivation of SM Charts, Realization of SM Chart, 
Implementation of Dice Game, and Binary Multiplier. 

 
 

TEXT BOOKS: 

1. Fundamentals of Logic Design –Charles H. Roth, 5th Ed., Cengage Learning. 
2. Switching Theory and Logic Design –A. Anand Kumar, PHI 
3. Logic Design Theory –N. N. Biswas, PHI 
 
 

REFERENCE BOOKS: 
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1. Switching and Finite Automata Theory –Z. Kohavi , 2 nd Ed., 2001, TMH 
2. Digital Design –Morris Mano, M.D.Ciletti, 4th Edition, PHI. 
3. Digital Circuits and Logic Design –Samuel C. Lee , PHI 
4. Fault tolerant and fault testable hardware design Parag K. Lala 
 
 
OUTCOMES 
Upon completion of the course, the student will be able to:  

 Design and analysis of sequential circuits.   
 Understand the concepts of sequential circuits, enabling them to analyze sequential 

systems in terms of state machines.   
 Understand about the SM charts and their realization  

 Implement synchronous state machines using flip-flops.  

 Detect the fault models in sequential circuits.  
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UNIT -I 

Minimization and Transformation of Sequential Machines 

Finite State Machines 

For a sequential logic system number of outputs (no) depend on the present and past, values 
of the inputs. Sequential logic systems are known as as finite-state machines (FSMs). FSMs 
are considered to have a number of internal states, which are determined by some 
combination of values of the ns state variables if— The FSM changes to a new state 
depending upon the present state and the inputs. The outputs depend on the present state 
and the inputs (Mealy machine) or just the present state (Moore machine).  

 

There are two types of FSMs, synchronous FSM and asynchronous FSM. 

Synchronous FSM: 

 
(The operation of a synchronous FSM is carried out by using a clock. At each clockâ€™event 
the state changes to a new state which is determined by the present state and inputs. 

 

Asynchronous FSM: 

Asynchronous sequential systems do not have clock and the internal states changes 
depending upon the change in inputs. Asynchronous FSMs are mainly used where a fast 
response to input changes. Asynchronous FSMs are also used where the introduction of extra 
frequency components related to the clock should be avoided.  



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                        DEPT OF ECE 

 
 
 

 Page 5 
 

 

 

 

FSM is a type of sequential circuit which is designed to sequence through the finite states in a 
predetermined sequential manner. An FSM consists of three parts:  
 
(1) Sequential current state register  
 
(2) Combinational next state logic 
  
(3) Combinational output logic 
 
(1) Sequential current state register: 

In this register set of n-bit flip-flops are used and are clocked by clock signal to hold the state 
vector of the FSM. For the state vector of n-bit 2n possible binary patterns are used for state 
encoding. 

(2) Combinational next state logic: 

As we know that, the FSM stays in a single state and at each active transition it changes from 
the current state to the next state. The next state is always a function of the inputs and its 
current state. 

(3) Combinational output logic:  

Outputs in FSM seem to be the function of the current state and primary inputs. Generally in 
a Moore FSM, the user wants to derive the outputs from the next state. We know that 
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synchronous sequential circuits change (affect) their states for every positive (or negative) 
transition of the clock signal based on the input. So, this behavior of synchronous sequential 
circuits can be represented in the graphical form and it is known as state diagram. 

A synchronous sequential circuit is also called as Finite State Machine (FSM), if it has finite 
number of states. There are two types of FSMs. 

 Mealy State Machine 
 Moore State Machine 

Now, let us discuss about these two state machines one by one. 

Mealy State Machine 

A Finite State Machine is said to be Mealy state machine, if outputs depend on both present 
inputs & present states. The block diagram of Mealy state machine is shown in the following 
figure. 

 

As shown in figure, there are two parts present in Mealy state machine. Those are 
combinational logic and memory. Memory is useful to provide some or part of previous 
outputs (present states) as inputs of combinational logic. 

So, based on the present inputs and present states, the Mealy state machine produces 
outputs. Therefore, the outputs will be valid only at positive (or negative) transition of the 
clock signal. 

The state diagram of Mealy state machine is shown in the following figure. 
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In the above figure, there are three states, namely A, B & C. These states are labelled inside 
the circles & each circle corresponds to one state. Transitions between these states are 
represented with directed lines. Here, 0 / 0, 1 / 0 & 1 / 1 denotes input / output. In the above 
figure, there are two transitions from each state based on the value of input, x. 

In general, the number of states required in Mealy state machine is less than or equal to the 
number of states required in Moore state machine. There is an equivalent Moore state 
machine for each Mealy state machine. 

Moore State Machine 

A Finite State Machine is said to be Moore state machine, if outputs depend only on present 
states. The block diagram of Moore state machine is shown in the following figure. 

 

As shown in figure, there are two parts present in Moore state machine. Those are 
combinational logic and memory. In this case, the present inputs and present states 
determine the next states. So, based on next states, Moore state machine produces the 
outputs. Therefore, the outputs will be valid only after transition of the state. 

The state diagram of Moore state machine is shown in the following figure. 
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In the above figure, there are four states, namely A, B, C & D. These states and the respective 
outputs are labelled inside the circles. Here, only the input value is labeled on each transition. 
In the above figure, there are two transitions from each state based on the value of input, x. 

In general, the number of states required in Moore state machine is more than or equal to 
the number of states required in Mealy state machine. There is an equivalent Mealy state 
machine for each Moore state machine. So, based on the requirement we can use one of 
them. 

Finite State Machine: 

Finite state machine can be defined as a type of machine whose past histories can affect its 
future behavior in a finite number of ways. To clarify, consider for example of binary full 
adder. Its output depends on the present input and the carry generated from the previous 
input. It may have a large number of previous input histories but they can be divided into two 
types: (i) Input 

The most general model of a sequential circuit has inputs, outputs and internal states. A 
sequential circuit is referred to as a finite state machine (FSM). A finite state machine is 
abstract model that describes the synchronous sequential machine. The fig. shows the block 
diagram of a finite state model. X1, X2,….., Xl, are inputs. Z1, Z2,….,Zm are outputs. 
Y1,Y2,….Yk are state variables, and Y1,Y2,….Yk represent the next state. 
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Capabilities and limitations of finite-state machine 

Let a finite state machine have n states. Let a long sequence of input be given to the 
machine. The machine will progress starting from its beginning state to the next states 
according to the state transitions. However, after some time the input string may be longer 
than n, the number of states. As there are only n states in the machine, it must come to a 
state it was previously been in and from this phase if the input remains the same the machine 
will function in a periodically repeating fashion. From here a conclusion that ‗for a n state 
machine the output will become periodic after a number of clock pulses less than equal to n 
can be drawn. States are memory elements. As for a finite state machine the number of 
states is finite, so finite number of memory elements are required to design a finite state 
machine. 

Limitations: 

     1.Periodic sequence and limitations of finite states: with n-state machines, we can generate 
periodic sequences of n states are smaller than n states. For example, in a 6-state machine, 
we can have a maximum periodic sequence as 0,1,2,3,4,5,0,1…. 

    2.No infinite sequence: consider an infinite sequence such that the output is 1 when and only 
when the number of inputs received so far is equal to P(P+1)/2 for P=1,2,3….,i.e., the 
desired input-output sequence has the following form: 

Input: x x x x x x x x x x   x x x x x x x x x x x x 

Output: 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 

Such an infinite sequence cannot be produced by a finite state machine. 
  3.Limited memory: the finite state machine has a limited memory and due to limited memory it 

cannot produce certain outputs. Consider a binary multiplier circuit for multiplying two 
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arbitrarily large binary numbers. The memory is not sufficient to store arbitrarily large partial 
products resulted duringmultiplication. 

Finite state machines are two types. They differ in the way the output is generate they are: 
      1. Mealy type model: in this model, the output is a function of the present state and the 

present input. 

2. Moore type model: in this model, the output is a function of the present state only. 

Mathematical representation of synchronous sequential machine: 
The relation between the present state S(t), present input X(t), and next state s(t+1) can be 

given as 
S(t+1)= f{S(t),X(t)} 
The value of output Z(t) can be given as 

Z(t)= g{S(t),X(t)} for mealy model 

Z(t)= G{S(t)} 
for Moore 
model 

Because, in a mealy machine, the output depends on the present state and input, where as 
in a Moore machine, the output depends only on the present state. 

Comparison between the Moore machine and mealy machine: 

  Moore machine mealy machine 

  1. its output is a function of present 1. its output is a function of present state 
  state only Z(t)= g{S(t)} as well as present input Z(t)=g{S(t),X(t)} 

  2. input changes do not affect the 2. input changes may affect the output of 
  output the circuit 

  3. it requires more number of states 3. it requires less number of states for 

 
for implementing same function implementing same function 

 
Mealy model:  

 
When the output of the sequential circuit depends on the both the present state of the 

flip-flops and on the inputs, the sequential circuit is referred to as mealy circuit or mealy 
machine.  
The fig. shows the logic diagram of the mealy model. Notice that the output depends up on 
the present state as well as the present inputs. We can easily realize that changes in the input 
during the clock pulse cannot affect the state of the flip-flop. They can affect the output of 
the circuit. If the input variations are not synchronized with a clock, he derived output will 
also not be synchronized with the clock and we get false output. The false outputs can be 
eliminated by allowing input to change only at the active transition of the clock. 
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Fig: Logic diagram of a Mealy model 

 
The behavior of a clocked sequential circuit can be described algebraically by means of state 
equations. A state equation specifies the next state as a function of the present state and 
inputs. The mealy model shown in fig. consists of two D flip-flops, an input x and an output z. 
since the D input of a flip-flop determines the value of the next state, the state equations for 
the model can be written as  

 
 
And the output equation is  

Z(t)={ y1(t)+y2(t)} X’(t)  
Where y(t+1) is the next state of the flip-flop one clock edge later, x(t) is the present input, 
and z(t) is the present output. If y1(t+1) are represented by y1(t) and y2(t) , in more compact 
form, the equations are 

Y1(t+1) = y1=y1x+y2x  
Y2 (t+1) = 
y2=y1’x  
Z = (y1+y2) x’ 

 
The stable table of the mealy model based on the above state equations and output 
equation is shown in fig. the state diagram based on the state table is shown in fig. 
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In general form, the mealy circuit can be represented with its block schematic as shown in 
below fig. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Moore model: 
 when the output of the sequential circuit depends up only on the present state of the flip-
flop, the sequential circuit is referred as to as the Moore circuit or the Moore 
machine.Notice that the output depend only on the present state. It does not depend upon 
the input at all. The input is used only to determine the inputs of flip-flops. It is not used to 
determine the output. The circuit shown has two T flip-flops, one input x, and one output z. 
it can be described algebraically by two input equations an output equation. 

T1=
y2x 
T2=
x 
Z=y
1y2 
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The characteristic equation of a T-flip-flop is 
Q(t+1)=TQ‘+T‘Q  

The values for the next state can be derived from the state equations by substituting T1 and 
T2 in the characteristic equation yielding 

 
  
The state table of the Moore model based on the above state equations and output 
equation is shown in fig. 

 
In general form , the Moore circuit can be represented with its block schematic as shown 
in below fig. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: Moore circuit model: 
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Figure: Moore circuit model with an output decoder 

 
 
 
 
 
Important definitions and theorems:  
A). Finite state machine-definitions:  

Consider the state diagram of a finite state machine shown in fig. it is five-state machine 
with one input variable and one output variable. 
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Successor: looking at the state diagram when present state is A and input is 1, the next state is 
D. this condition is specified as D is the successor of A. similarly we can say that A is the 1 
successor of B, and C,D is the 11 successor of B and C, C is the 00 successor of A and D, D is the 
000 successor of A,E, is the 10 successor of A or 0000 successor of A and so on. 

 
Terminal state: looking at the state diagram , we observe that no such input sequence exists 
which can take the sequential machine out of state E and thus state E is said to be a terminal 
state. 

 
Strongly-connected machine: in sequential machines many times certain subsets of states may 
not be reachable from other subsets of states. Even if the machine does not contain any 
terminal state. If for every pair of states si, sj, of a sequential machine there exists an input 
sequence which takes the machine M from si to sj, then the sequential machine is said to be 
strongly connected. 
 
B). state equivalence and machine minimization:  

In realizing the logic diagram from a stat table or state diagram many times we come across 
redundant states. Redundant states are states whose functions can be accomplished by other 
states. The elimination of redundant states reduces the total number of states of the machines 
which in turn results in reduction of the number of flip-flops and logic gates, reducing the cost 
of the final circuit.  

Two states are said to be equivalent. When two states are equivalent, one of them can be 
removed without altering the input output relationship. 

 
State equivalence theorem: it states that two states s1, and s2 are equivalent if for every 
possible input sequence applied. The machine goes to the same next state and generates the 
same output. That is  

If S1(t+1)= s2(t+1) and z1=z2, then s1=s2 
 
C). Distinguishable states and distinguishing sequences:  

Two states sa, and sb of a sequential machine are distinguishable, if and only if there exists at 
least one finite input sequence which when applied to the sequential machine causes different 
outputs sequences depending on weather sa or sb is the initial state.  

Consider states A and B in the state table, when input X=0, their outputs are 0 and 1 
respectively and therefore, states A and B are called 1-distinguishable. Now consider states A 
and E . the output sequence is as follows. 
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Here the outputs are different after 2-state transition and hence states A and E are 2-. Again 
consider states A and C . the output sequence is as follows: 

 
 
Here the outputs are different after 3- transition and hence states A and B are 3- 
distinguishable. the concept of K- distinguishable leads directly to the definition of K-
equivalence. States that are not K-distinguishable are said to be K-equivalent. 
 
Truth table for Distinguishable states: 

 
PS  NS,Z   

  X=0  X=1 

A  C,0  F,0 

B  D,1  F,0 
C  E,0  B,0 

D  B,1  E,0 
E  D,0  B,0 
F  D,1  B,0 

 
 
State Reduction: 
The reduction of the number of flip-flops in a sequential circuit is referred to as the state 
reduction problem. State-reduction algorithms are concerned with procedures for reducing the 
number of states in a state table, while keeping the external input-output requirements 
unchanged. Since (N) flip-flops produce (2N) states, a reduction in the number of states may (or 
may not) result in a reduction in the number of flip-flops. An  n predictable effect in reducing 
the number of flip-flops is that sometimes the equivalent circuit (with fewer flip-flops) may 
require more combinational gates.We will illustrate the state reduction procedure with an 
example. We start with a sequential circuit whose specification is given in the state diagram 
shown in Fig. (1). In thisexample, only the input-output sequences are important; the internal 
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states are used merely to provide the required sequences. For this reason, the states marked 
inside the circles are denoted by letter symbols instead of their binary values. This is in constant 
to a binary counter, 
where the binary value sequence of the state themselves is taken as the  outputs. 
 

 
 
 
There are an infinite number of input sequences that may be applied to the circuit; each results 
in a unique output sequence. As an example, consider the input sequence [01010110100] 
starting from the initial state (a). Each input of 0 or 1 produces an output of 0 or 1 and causes 
the circuit to go to the next state. the output and state sequence for the given input sequence 
as follows: With the circuit in initial state (a), an input of 0 produces an output of 0 and the 
circuit remains in state (a). With present state (a) and input of 1, the output is 0 and the next 
state is (b). With present state (b) and input of 0, the output is 0 and next state is (c). Continuing 
this process, we find the complete sequence to be as 

follows:  
In each column, we have the present state, input value, and output value. The next state is 
written on top of the next column. It is important to realize that in this circuit, the states 
themselves are of secondary importance because we are interested only in output sequences 
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caused by input sequences. Now let us assume that we have found a sequential circuit whose 
state diagram has less than seven states and we wish to compare it with the circuit whose state 
diagram is given by Fig. (1). If identical input sequences are applied to the two circuits and 
identical outputs occur for all input sequences, then the two circuits are said to be equivalent 
(as far as the input-output is concerned) and one may be replaced by the other. The problem of 
state reduction is to find ways of reducing the number of states in a sequential circuit without 
altering  the input-output relationships. 
We now proceed to reduce the number of states for this example. First, we need the state 
table; it is more convenient to apply procedures for state reduction using a table rather than a 
diagram. The state table of the circuit is listed in Table (1) and is obtained directly from the 
state diagram. 
 

 
An algorithm for the state reduction of a completely specified state table is given here 
without proof:"Two states are said to be equivalent if, for each member of the set of inputs, 
they give exactly the same output and send the circuit either to the same state or to an 
equivalent state." When two states are equivalent, one of them can be removed without 
altering the input-output relationships. 
Now apply this algorithm to Table (1). Going through the state table, we look for two present 
states that go to the same next state and have the same output for both input combinations. 
States (g) and (e) are two such states: they both go to states (a & se) are equivalent and one of 
these states can be removed. The procedure of removing a state and replacing it by its 
equivalent is demonstrated in Table (2). The row with present state (g) is removed and state (g) 
is replaced by state (e) each time it occurs in the next-state columns 
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Present state (f) now has next states (e and f) and outputs 0 and 1 for x=0 and x=1,respectively. 
The same next states and outputs appear in the row with present (d). Therefore,states (f and d) 
are equivalent and state (f) can be removed and replaced by (d). The final reduced table is 
shown in Table (3). The state diagram for the reduced table consists of only five states and is 
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shown in Fig. (2). This state diagram satisfies the original input-output specifications and will 
produce the required output sequence for any given input sequence.  
The following list derived from the state diagram of Fig. (2) is for the input sequence used 
previously (note that the same output sequence results, although the state sequence is 
different):  

 
In fact, this sequence is exactly the same as that obtained for Fig. (1), if we replace (g by e and f 
by d).Checking each pair of states for possible equivalency can be done systematically by means 
of a procedure that employs an implication table. The implication table consists of squares, one 
for every suspected pair of possible equivalent states. By judicious use of the table, it is possible 
to determine all pairs of equivalent states in a state table. The use of the implication table for 
reducing the number of states in a state table is demonstrated in the next section.The 
sequential circuit of this example was reduced from seven to five state. In general, reducing the 
number of states in a state table may result in a circuit with less equipment. 
However, the fact that a state table has been reduced to fewer state doesn't guarantee a saving 
in the number of flip-flops or the number of gates. 
 
Implication Table: 
The state-reduction procedure for completely specified state tables is based on the algorithm 
that two states in a state table can be combined into one if they can be shown to be equivalent. 
Two states are equivalent if for each possible input, they give exactly the same output and go to 
the same next states or to equivalent next state. Consider for example, the state table shown in 
Table (4). The present states (a) and (b) have the same output for the same input. Their next 
states are (c and d) for x=0 and (b and a) for x=1. If we can show that the pair of states (c, d) are 
equivalent, then the pair of states (a, b) will also be equivalent because they will have the same 
or equivalent next states. When this relationship exists, we say that (a, b) imply (c, d). Similarly, 
from the last two rows of Table (4), we find that the pair of states (c, d) imply the pair of states 
(a, b).  
The characteristic of equivalent states is that if (a, b) imply (c, d) and (c, d) imply (a, b), then 
both pairs of states are equivalent; that is, (a and b) are equivalent as well as (c and d). As a 
consequence, the four rows of Table (4) can be reduced to two rows by combining (a and b) 
into one state and (c and d) into a second state.The checking of each pair of states for possible 
equivalence in a table with a large number of states can be done systematically by means of an 
implication table. The implication table is a chart that consists of squares, one for every possible 
pair of states, that provide spaces for listing any possible implied states. By judicious use of the 
table, it is possible to determine all pairs of equivalent states. The state table of Table (5) will be 
used to illustrate this procedure. The implication table is shown in Fig. (3). On the left side along 
the vertical are listed all the states defined in the state table except the first, and across the 
bottom horizontally are listed all the states expect the last. The result is a display of all possible  
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combinations of two states with a square placed in the intersection of a row and a column 
where the two states can be tested for equivalence. 
Two states that are not equivalent are marked with a cross (x) in the corresponding square, 
whereas their equivalence recorded with a check mark (√). Some of the squares have entries of 
implied states that must be further investigated to determine whether they are equivalent or 
not. The step-by-step procedure of filling in the squares is as follows. First, we place a cross in 
any square corresponding to a pair of states whose outputs are not equal for every input. In this 
case, state (c) has a different output than any other state, so a cross is placed in the two 
squares of row (c) and the four squares of column (c). There are nine other squares in this 
category in the implication table. 

 
Next, we enter in the remaining squares the pairs of states that are implied by the pair of states 
representing the squares. We do that starting from the top square in the left column and going 
down and then proceeding with the next column to the right. From the state table, we see that 
pair (a,b) imply (d,e), so (d,e) is recorded in the square defined by column (a and row b). We 
proceed in this manner until the entire table is completed. Note that states (d,e) are equivalent 
because they go to the same next state and have the some output. Therefore, a check mark is 
recorded in the square defined by column (d and row e), indicating that the two states are 
equivalent and independent of any implied pair. 
The next step is to make successive passes through the table to determine whether any 
additional squares should be marked with a cross. A square in the table is crossed out if it 
contains at least one implied pair that is not equivalent. For example, the square defined by (a) 
and (f) is marked with a cross next to (c,d) because the pair (c,d) defines a square that contains 
a cross. This procedure is repeated until no additional squares can be crossed out. 
Finally, all the squares that have no crosses are recorded with check marks. These squares 
define pairs of equivalent states. In this example, the equivalent states are: 
(a,b) (d,e) (d,g) (e,g) 
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We now combine pairs of states into larger groups of equivalent states. The last three pairs can 
be combined into a set of three equivalent states (d,e,g) because each one of the states in the 
group is equivalent to the other two. The final partition of the states consists of the equivalent 
states found from the implication table, together with all the remaining states in the state table 
that are not equivalent to any other state.(a,b) (c) (d,e,g) (f) This means that Table (5) can be 
reduced from seven states to four states, one for each member of the above partition. The 
reduced table is obtained by replacing state (b by a and states e and g by d). 

 
Merger Diagram: 
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Having found all the compatible pairs, the next step is to find larger sets of states that are 
compatible. The maximal compatible is a group of  compatibles that contains all the possible 
combinations of compatible states. The maximal compatible can be obtained from a merger 
diagram, as shown in Fig. (4). The merger diagram is a graph in which each state is represented 
by a dot placed along the circumference of a circle. Lines are drawn between any two 
corresponding dots that form a compatible pair. All possible compatibles can be obtained from 
the merger diagram by observing the geometrical patterns in which states are connected to 
each other. An isolated dot represents a state that is not compatible to any other state. A line 
represents a compatible pair. A triangle constitutes a compatible with three states. An nstate 
compatible is represented in the merger diagram by an n-state polygon with all its diagonals 
connected. 
The merger diagram of Fig. (4-a) is obtained from the list of compatible pairs derived from the 
implication table. There are seven straight lines connecting the dots, one for each compatible 
pair. The lines from a geometrical pattern consisting of two triangles connecting (a,c, d) and (b, 
e, f) and a line (a, b). The maximal compatibles are: 
(a,b) (a,c,d) (b,e,f) 
Fig. (4-b) shows the merger diagram of an 8-state. The geometrical patterns are a rectangle 
with its two diagonals connected to form the 4-state compatible (a, b, e, f), a triangle (b, c, h), a 
line (c, d), and a single state (g) that is not compatible to any other state. The maximal 
compatibles are:(a,b,e,f) (b,c,h) (c,d) (g) 

 
 
Merger Chart Methods: 
 
Merger graphs: 

 
The merger graph is a state reducing tool used to reduce states in the incompletely 

specified machine. The merger graph is defined as follows.  
1. Each state in the state table is represented by a vertex in the merger graph. So it 

contains the same number of vertices as the state table contains states.   
2. Each compatible state pair is indicated by an unbroken line draw between the two state 
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vertices   
3. Every potentially compatible state pair with non-conflicting outputs but with different 

next states is connected by a broken line. The implied states are written in theline break 
between the two potentially compatible states.   

4. If two states are incompatible no connecting line is drawn.  

 
Consider a state table of an incompletely specified machine shown in fig. the 

corresponding merger graph shown in fig. 
State table: 

 
PS      NS,Z   

 I1  I2  I3  I4 

A  …  E,1  B,1  …. 

B  …  D,1  …  F,1 

C  F,1  …  …  … 
D  …  …  C,1  … 

E  C,0  …  A,0  F,1 
F  D,0  A,1  B,0  … 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a)  Merger graph b)  simplified merger graph 
 
 
 
States A and B have non-conflicting outputs, but the successor under input I2are compatible 
only if implied states D and E are compatible. So, draw a broken line from A to B with DE written 
in between states A and C are compatible because the next states and output entries of states A 
and C are not conflicting. Therefore, a line is drawn between nodes A and C. states A and D have 
non-conflicting outputs but the successor under input I3 are B and C. hence join A and D by a 
broken line with BC entered In between. 
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Two states are said to be incompatible if no line is drawn between them. If implied states are 
incompatible, they are crossed and the corresponding line is ignored. Like, implied states D and 
E are incompatible, so states A and B are also incompatible. Next, it is necessary to check 
whether the incompatibility of A and B does not invalidate any other broken line. Observe that 
states E and F also become incompatible because the implied pair AB is incompatible. The 
broken lines which remain in the graph after all the implied pairs have been verified to be 
compatible are regarded as complete lines.  
After checking all possibilities of incompatibility, the merger graph gives the following seven 
compatible pairs. 
 
These compatible pairs are further checked for further compatibility. For example, pairs 
(B,C)(B,D)(C,D) are compatible. So (B, C, D) is also compatible. Also pairs (A,c)(A,D)(C,D) are 
compatible. So (A,C,D) is also compatible. . In this way the entire set of compatibles of 
sequential machine can be generated from its compatible pairs.  
To find the minimal set of compatibles for state reduction, it is useful to find what are called the 
maximal compatibles. A set of compatibles state pairs is said to be maximal, if it is not 
completely covered by any other set of compatible state pairs. The maximum compatible can 
be found by looking at the merger graph for polygons which are not contained within any 
higher order complete polygons. For example only triangles (A, C,D) and (B,C,D) are of higher 
order. The set of maximal compatibles for this sequential machine given as 
 
 
Example: 
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Figure: state table 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
State Minimization: 
Completely Specified Machines 
 

 Two states, si and sj of machine M are distinguishable if and only if there exists a finite 
input sequence which when applied to M causes different output sequences depending 
on whether M started in si or sj.   

 Such a sequence is called a distinguishing sequence for (si, sj).   
 If there exists a distinguishing sequence of length k for (si, sj), they are said to be 

k-distinguishable.  
 

EXAMPLE:  
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• states A and B are 1-distinguishable, since a 1 input applied to A yields an output 

1, versus an output 0 from B.   
• states A and E are 3-distinguishable, since input sequence 111 applied to A yields 

output 100, versus an output 101 from E.   
• States si and sj (si ~ sj ) are said to be equivalent iff no distinguishing sequence exists 

for (si, sj ).   
• If si ~ sj and sj ~ sk, then si ~ sk. So state equivalence is an equivalence relation (i.e. it is 

a  
reflexive, symmetric and transitive relation). 

• An equivalence relation partitions the elements of a set into equivalence classes.   
• Property: If si ~sj, their corresponding X-successors, for all inputs X, are also equivalent.   
• Procedure: Group states of M so that two states are in the same group iff they 

are equivalent (forms a partition of the states).  
 

 
Completely Specified Machines  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pi : partition using distinguishing sequences of length i. 
Partition: Distinguishing Sequence: 
P0  = (A B C D E F)  
P1 = (A C E)(B D F) x =1 
P2 = (A C E)(B D)(F) x =1; x =1 
P3 = (A C)(E)(B D)(F) x =1; x =1; x =1 
P4 = (A C)(E)(B D)(F)  
Algorithm terminates when Pk = PK+1 
Outline of state minimization procedure:  

• All states equivalent to each other form an equivalence class. These may be 
combined into one state in the reduced (quotient) machine.   

• Start an initial partition of a single block. Iteratively refine this partition by 
separating the 1-distinguishable states, 2-distinguishable states and so on.   

• To obtain Pk+1, for each block Bi of Pk, create one block of states that not 1-
distinguishable within Bi , and create different blocks states that are 1-
distinguishable  
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within Bi . 
Theorem:  The equivalence partition is unique.  
Theorem: If two states, si and sj, of machine M are distinguishable, then they are (n-1 
)-distinguishable, where n is the number of states in M.  
Definition: Two machines, M1 and M2, are equivalent (M1 ~ M2 ) if, for every state in 
M1 there is a corresponding equivalent state in M2 and vice versa. 
 
Theorem. For every machine M there is a minimum machine Mred ~ M. Mred is unique up 
to isomorphism. 
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State Minimization: Incompletely 
Specified Machines  
Statement of the problem: given an incompletely specified machine M, find a machine M’ 
such that:  

– on any input sequence, M’ produces the same outputs as M, whenever M is 
specified.   

– there does not exist a machine M’’ with fewer states than M’ which has the same 
property  

 

 

Machine M: 
 
 
 
 
 
 
 

 

Attempt to reduce this case to usual state minimization of completely specified machines. 
 

 Brute Force Method: Force the don‘t cares to all their possible values and choose the 
smallest of the completely specified machines so obtained.   

 In this example, it means to state minimize two completely specified machines obtained 
from M, by setting the don‘t care to either 0 and 1.  

 
Suppose that the - is set to be a 0. 
 
 
 
 
 
 
 
 
 
 
 States s1 and s2 are equivalent if s3 and s2 are equivalent, but s3 and s2 assert different 

outputs under input 0, so s1 and s2 are not equivalent.   
 States s1 and s3 are not equivalent either.  

  
 So this completely specified machine cannot be reduced further (3 states is the 

minimum).  
 
Suppose that the - is set to be a 1. 
 
 
 
 
 
 
 

 j1  j2,  (Qi,a)  Qj1 , and  
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 States s1 is incompatible with both s2 and s3.  
 States s3 and s2 are equivalent.  
 So number of states is reduced from 3 to 2.  

 
Machine M’’red : 
 
 
 
 
 
 
 
Can this always be done? 
Machine M: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
Machine M2 and M3 are formed by filling in the unspecified entry in M with 0 and 1, 
respectively.  
Both machines M2 and M3 cannot be 
reduced. Conclusion?: M cannot be 
minimized further! But is it a correct 
conclusion?  
Note: that we want to ‗merge‘ two states when, for any input sequence, they generate the 
same output sequence, but only where both outputs are specified.  
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Definition: A set of states is compatible if they agree on the outputs where they are all 
specified.  
Machine M’’ : 
 
 
 
 
 
 
 
 
 
In this case we have two compatible sets: A = (s1, s2) and B = (s3, s2). A reduced machine Mred 
can be built as follows. 
 
  
Machine Mred 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A set of compatibles that cover all states is: (s3s6), (s4s6), (s1s6), (s4s5), (s2s5). 
But (s3s6) requires (s4s6),  

(s4s6) requires(s4s5), (s4s5) requires (s1s5), (s1s6) 
requires (s1s2), (s1s2) requires (s3s6), (s2s5) 
requires (s1s2).  

So, this selection of compatibles requires too many other compatibles... 
 
 
 
 
 
 
 
 
 

 Another set of compatibles that covers all states is (s1s2s5), (s3s6), (s4s5).  
 But (s1s2s5) requires (s3s6) (s3s6) requires (s4s6)  

  (s4s6) requires (s4s5) (s4s5) requires (s1s5). 
 So must select also (s4s6) and (s1s5).   
 Selection of minimum set is a binate covering problem  
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UNIT -II 

Fundamental mode model  

Analysis-of-Sequential-Circuits 

Analysis of Sequential Circuits : The behaviour of a sequential circuit is determined from the 
inputs, the outputs and the states of its flip-flops. Both the output and the next state are a 
function of the inputs and the present state. The analysis task is much simpler than the 
synthesis task. To analyze a circuit, we simply reverse the steps of synthesis process. Figure 
below shows the analysis steps. 

 

Analysis procedure of a sequential circuit: 

1. We start with the logic schematic from which we can derive excitation equations for 
each flip-flop input. 

2. Then, to obtain next-state equations, we insert the excitation equations into the 
characteristic equations. 

3. The output equations can be derived from the schematic, and once we have our output 
and next-state equations, we can generate the next-state and output tables as well as 
state diagrams. 
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4. When we reach this stage, we use either the table or the state diagram to develop a 
timing diagram which can be verified through simulation. 

Stability: 
 For a given set of inputs (i.e., values), the system is stable if the circuit eventually reaches 
steady state and the excitation variables and secondary variables are equal and unchanging 
(little y = capital y), otherwise the circuit is unstable. 
 
 Fundamental Mode: 
 A circuit is operating in fundamental mode if we assume/force the following restrictions on 
how the inputs can change: 1. only one input is allowed to change at a time 2.the input changes 
only after the circuit is stable. 
Asynchronous circuits are identified by: 

 The presence of combinatorial feedback paths, and/or 
 The presence of un-clocked storage elements (i.e., latches). 
 Analysis involves obtaining a table or diagram that describes the sequence of 

internal states and outputs as a function of changes in the circuit inputs. 
 The tables we will try to obtain are transition tables and Flow tables 

Consider the following circuit that has combinatorial feedback paths (and is 
therefore identified as asynchronous). No apparent latches in the circuit 

 
 
 
Circuit has one input (x), one output (z), two secondary variables (y1, y2) and two excitation 
variables (Y1, Y2). 
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 Write logic equations for the excitation variables in terms of the circuit inputs and secondary 
variables:

 
Write logic equations for circuit outputs in terms of the circuit inputs and secondary variables: 

 
Transition Table: 
Using these equations, we can write a transition table that shows excitation variables and 
outputs as a function of inputs and secondary variables: 

 
Note that stable states (secondary variables equal to excitation variables) are 
circled. 
We can also create a flow table, which is just the transition table with binary numbers replaced 
with symbols (e.g., let a = 00, b = 01, c = 10 and d = 11): 
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Analysis Example –Flow Table Alternative 
Another way to draw a flow table: 

 
Left-most column shows current state (secondary variables), and the inputs are listed across 
the top. Entries in the matrix show the next state (excitation variables) and output values. 
 
Primitive Flow Tables 
Flow table with only one stable state per row is called a primitive flow table. E.g., a primitive 
flow table: 

 
E.g., a flow table that is not a primitive flow table: 

 
Flow table: analogous to the state table 
Example: Consider a sequential circuit with two inputs x1 and x2 and one 
output z. The initial input state is x1 = x2 = 0. The output value is 
to be 1 if and only if the input state is x1 = x2 = 1 and the 
preceding input state is x1 = 0, x2 = 1 
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Reduction Of Flow Tables: 
Reduction of primitive flow table has two functions: 
• Elimination of redundant stable states 
• Merging those stable states which are distinguishable by input states 
Example: Rewrite primitive flow table like a state table 
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Specifying the Output Symbols 
Assignment of output values to the unstable states in the reduced flow table • When the circuit 
is to go from one stable state to another stable state associated with the same output value: 
assign the same output value to the unstable state en route to avoid a momentary opposite 
value • When the state changes from one stable state with a given output value to another 
stable state with a different output value: the transition may be associated with either of these 
output values – When the relative timing of the output value change is of no importance: 
choose the output value so as to minimize logic. 

 
Excitation and Output Tables 

 
Synthesis procedure for SIC fundamental-mode asynchronous circuits: 
1. Construct a primitive flow table from the verbal description: specify only those output values 
that are associated with stable states 
2. Obtain a minimum-row reduced flow table: use either the merger graph or merger table for 
this purpose 
3. Assign secondary variables to the rows of the reduced flow table and construct excitation 
and output tables: specify output values associated with unstable states according to design 
requirements 
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4. Derive excitation and output functions, and the corresponding hazard-free Circuit 
 
Example: Design an asynchronous sequential circuit with two inputs, x1 and x2, and two 
outputs, G and R, as follows. 
• Initially, both input values and both output values are 0 
• Whenever G = 0 and either x1 or x2 becomes 1, G becomes 1 
• When the second input becomes 1, R becomes 1 
• The first input value that changes from 1 to 0 turns G equal to 0 
• R becomes 0 when G is 0 and either input value changes from 1 to 0 

 
 

 
 
Analysis Summary 
Procedure to determine transition table and/or flow table from a circuit with combinatorial 
feedback paths: 

 Determine feedback paths. 
 Label Y (excitation variables) at output and y (secondary variables at input). 
 Derive logic expressions for Y (excitation variables) in terms of circuit inputs and secondary 
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variables. Do the same for circuit outputs. 
 Create a transition table and flow table. 
 Circle stable states where Y (excitation variables) are equal to y (secondary variables). 

 
 
Latch Analysis 
We can use the previous analysis technique to see how latches work… 

 We will consider SR (built with NOR gates) and S’R’ (built with NAND gates) 
Latches. 
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Note: We can see the undesirable case when SR=11 and inputs change. 

 Depending on the various delays and assuming SR=11 ! SR=00… 
 If SR=11 -> SR=10 -> SR=00, we get stable state with output of 1. 
 If SR=11 -> SR=01 -> SR=00, we get stable state with output of 0. 
 So the stable state is unpredictable. 

 
Analysis With Latches 
We might have asynchronous circuits with latches in them: We identify two inputs (x1,x2), two 
excitation variables (Y1,Y2), two secondary variables (y1,y2)and two latches. 
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Derive the transition table. 

 We need to find the excitation equations in terms of secondary variables and the 
circuit inputs. 

 To do this, we need to use the latch equations: 
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Analysis Summary With Latches 
Label each latch output with Yj and its feedback path with yj. 

 Derive logic equations for latch inputs Sj and Rj. 
 Check of SR=0 for NOR Latches and S’R’=0 for NAND Latches. If not satisfied, the circuit 

may not work correctly. 
 Create logic equations for latch outputs Yj using the known behavior of a latch (Y=S+R’y 

for NOR Latches and Y=S’+Ry for NAND Latches). 
 Construct a transition table using the logic equations for the latch outputs and circuit stable 

states. 
 Obtain a flow table, if desired. 

Asynchronous Circuit Design 
Given verbal problem description: 

 Obtain a primitive flow table (one stable state per row) from problem 
description. 

 Reduce the flow table to get a smaller flow table with less states. 
 Perform state assignment (need to avoid race conditions) to obtain a transition 
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table. 
 Obtain next state and output equations (need to avoid hazards and glitches). 
 Draw circuit (with or without latches). 

Design Example 
Consider a circuit with two inputs, D and G and one output, Q. Output Q follows D 
with G=1, otherwise Q holds its value. 

 Assume fundamental mode operation – only one input changes at a time 

 

 
Design Example – Reduced Flow Table 
For the moment, assume that the following flow table will also work for the verbal problem 
description – assume (a,c,d) and (b,e,f) can be merged. 
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Design Example - State Assignment and Transition Table 
We only have two states, so we can let a=0, and b=1. 
Our transition table becomes: 

 
Design Example - Logic Equations 
We can make K-Maps to determine excitation variables (Y) and output (Z) in terms 
of circuit inputs and secondary variables (y): 

 
Output equal to the secondary (state) variable. 
Can finally draw the circuit: 
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Implementation Using Latches 
We can also implement asynchronous circuits using latches at the outputs. 

 Given the map for each excitation variable Y, derive necessary equations for S and R 
of a latch to produce Y. 

 Derive Boolean equations for S and R. 
 Need to make sure the S and R never have equal (potential problem in Latch). 

Implementation Using Latches – SR Latch Excitation Table 
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Implementation Using Latches
 

 

 
Output Assignment 
Flow and transition tables might have unspecified entries for circuit outputs. 

 This might be a result of the fundamental mode assumption. 
 This might be a result of unstable states. 
 Note: output values always assigned for stable states! 
 We should think about the correctness of these unspecified don’t care output 

Values. 
 We might temporarily pass through these values while transitioning from one 

stable state to another stable state. 
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Example: 
Consider the following flow table with don’t cares at some outputs (circuit has one 
input and one output): 

 
We _might_ consider using the un-specified output values as don’t cares in order to minimize 
the logic function for the output.  We need to be careful with output don’t cares in 
asynchronous design. 

 Consider start and stop STABLE STATES due to a change in input value. 
 If both stable states produce a 0 output, make output 0 instead of a don’t 

care. 
 If both stable states produce a 1 output, make output 1 instead of a don’t 

care. 
 If stable states produce different outputs, the output can remain a don’t care 

and be used to find a smaller output circuit. 
 We do this to avoid GLITCHES in the output (e.g., if the output should go 0->0 (or 

1->1), it should remain 0 (or 1) during the transition through an unstable state. 
 
Example: 
Recall the flow table… If we consider possible transitions, we see that some of the 
output don’t cares should be changed to 0 or 1 to avoid GLITCHES. 

 
The above changes will avoid temporary glitches at the outputs during transitions 
where the output should not change. 
 
Fundamental Mode Circuit Design 
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Design a fundamental mode sequential circuit with two inputs X2and X1.The single output Z is 
to be 1 only when X2X1= 11, provided that this is the third of a sequence of input combinations 
00 10 11. Otherwise, the output is to be 0. The design must be sure of no spurious 1 outputs 
will occur during transitions between two states with 0 outputs. Both inputs will not change 
simultaneously. 

                    X2X1=> 00 10 11                 Z = 1 

 

 

Fundamental Mode Circuit Design 
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What are Hazards ? 

Hazards in any system are obviously an un-desirable effect caused by either a deficency in the 
system or external influences.  Logic hazards are manifestations of a problem in which changes 
in the input variables do not change the output correctly due to some form of delay caused by 
logic elements (NOT, AND, OR gates, etc.) This results in the logic not performing its function 
properly. The three different most common kinds of hazards are usually referred to as static, 
dynamic and function hazards. Hazards are a temporary problem, as the logic circuit will 
eventually settle to the desired function. Therefore, in synchronous designs, it is standard 
practice to register the output of a circuit before it is being used in a different clock domain or 
routed out of the system, so that hazards do not cause any problems. If that is not the case, 
however, it is imperative that hazards be eliminated as they can have an effect on other 
connected systems. 

Hazards in Combinational Logic 

If the input of a combinational circuit changes, unwanted switching variations may appear in 
the output. These variations occur when different paths from the input to output have 
different delays. If, from response to a single input change and for some combination of 
propagation delay, an output momentarily goes to 0 when it should remain a constant value 
of 1, the circuit is said to have a static 1-hazard. Likewise, if the output momentarily goes to 1 
when it should remain at a constant value of 0, the circuit is said to have a 0-hazard. 

When an output is supposed to change values from 0 to 1, or 1 to 0, this output may change 
three or more times; if this situation were to occur, the circuit is said to have a dynamic 
hazard. Figure 1.1 shows the different outputs from a circuit with hazards. In each of the 
three cases, the steady-state output of the circuit is correct, however, a switching variation 
appears at the circuit output when the input is changed. 

 

The first hazard in Figure 1.2, the static 1-hazard depicts that if A = C = 1, then F = B + B'  = 1, 
thus the output F should remain at a constant 1 when B changed from 1 to 0. However in the 
next illustration, the static 0-hazard , if each gate has a propagation of 10 ns, E will go to 0 
before D goes to 1, resulting in a momentary 0 appearing at output F. This is also known to 
be a glitch caused by the 1-hazard. One should note that right after B changes to 0, both the 

https://en.wikipedia.org/wiki/NOT_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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inverter input (B) and output (B') are 0 until the delay has elapsed. During this propagation 
period, both of these input terms in the equation for F have value of 0, so F also momentarily 
goes to a value of 0.These hazards, static and dynamic, are completely independent of the 
propagation delays that exist in the circuit. If a combinational circuit has no hazards, then it is 
said that for any combination of propagation delays and for any individual input change, that 
output will not have a variation in I/O value. On the contrary, if a circuit were to contain a 
hazard, then there will be some combination of delays as well as an input change for which 
the output in the circuit contains a transient. 

This combination of delays that produce a glitch may or may not be likely to occur in the 
implementation of the circuit. In some instances it is very unlikely that such delays would 
occur. The transients (or glitches) that result from static and dynamic timing hazards very 
seldom cause problems in fully synchronous circuits, but they are a major issue in 
asynchronous circuits (which includes nominally synchronous circuits that involve either the 
use of asynchronous preset/reset inputs that use gated clocks). 

The variation in input and output also depends on how each gate will respond to a change of 
input value. In some instances, if more than one input gate changes within a short amount of 
time, the gate may or may not respond to the individual input changes. One example in 
Figure 1.2, assuming that the inverter (B) has a propagation delay of 2ns instead of 10ns. 
Then input D and E changes reaching the output OR gate are 2ns from each other, thus the 
OR gate may or may not generate the 0 glitch.  
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A gate displaying this type of response is said to have what is known as an inertial delay. 
Rather often the inertial delay value is presumed to be the same as the propagation delay of 
the gate. When this occurs, the circuit above will respond with a 0 glitch only for inverter 
propagation delays that are larger than 10ns. However, if an input gate invariably responds to 
input change that has a propagation delay, is said to have an ideal or transport delay. If the 
OR gate shown above has this type of delay, than a 0 glitch would be generated for any 
nonzero value for the inverter propagation delay. 

Hazards can always be discovered using a Karnaugh map. The map illustrated above in Figure 
1.2, which not a single loop covers both minterms ABC and AB'C. Thus if A = C = 1 and B's 
value changes, both of these terms can go to 0 momentarily; from this momentary change, a 
0 glitch is found in F. To detect hazards in a two-level AND-OR combinational circuit, the 
following procedure is completed:  

A sum-of-products expression for the circuit needs to be written out. 
Each term should be plotted on the map and looped, if possible. 
If any two adjacent 1's are not covered by the same loop, then a 1-hazard exists for the 
transition between those two 1's. For any n variable map, this transition only occurs when 
one variable changes value and the other n  1 variables are held constant.  

If another loop is added to the Karnaugh map in Fig. 1.2(a) and then add the 
corresponding gate to the circuit in Figure 1.3 below, the hazard can be eliminated. The 
term AC remains at a constant value of 1 while B is changing, thus a glitch cannot appear in 
the output. With this change, F is no longer a minimum SOP.  
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The above  is a circuit with numerous 0-hazards. The function that represents the circuit's 
output is: 

F  = (A + C)(A' + D')(B' + C' + D) 

The Karnaugh map in Fig. 1.4(b) has four pairs of adjacent 0's that are not covered by a 
common loop. The arrows indicate where each 0 is not being looped, and they each 
correspond to a 0-hazard. If A = 0, B = 1, D = 0, and C changes from 0 to 1, there is a chance 
that a spike can appear at the output for any combination of gate delays. lastly, Fig. 1.4(c) 
depicts a timing diagram that, assumes a delay of 3ns for each individual inverter and a delay 
of 5ns for each AND gate and each OR gate. 

 

 

The 0-hazards can be eliminated by looping extra prime implicants that cover the 0's adjacent 
to one another, as long as they are not already covered by a common loop. By eliminating 
algebraically redundant terms, or consensus terms, the circuit can be reduced to the 
following equation below. Using three additional loops will completely eliminate the 0-
hazards, resulting the following equation:  

F = (A + C)(A' + D')(B' + C' + D)(C + D')(A + B' + D)(A' + B' + C') 

This figure below illustrates the Karnaugh map after removing the 0-hazards.  
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 In digital logic hazards are usually refered to in one of three ways: 

 Static Hazards 
 Dynamic Hazards 
 Function Hazards 
  

Static Hazards 

A static hazard is the situation where, when one input variable changes, the output changes 
momentarily before stabilizing to the correct value. There are two types of static hazards: 

 Static-1 Hazard: the output is currently 1 and after the inputs change, the output 
momentarily changes to 0,1 before settling on 1 

 Static-0 Hazard: the output is currently 0 and after the inputs change, the output 
momentarily changes to 1,0 before settling on 0 

In properly formed two-level AND-OR logic based on a Sum Of Products expression, there will 
be no static-0 hazards. Conversely, there will be no static-1 hazards in an OR-AND 
implementation of a Product Of Sums expression. 

The most commonly used method to eliminate static hazards is to add redundant logic 
(consensus terms in the logic expression). 

Let us consider an imperfect circuit that suffers from a delay in the physical logic elements i.e. 
AND gates etc. The simple circuit performs the function noting: 

f = X1 * X2 + X1' * X3 

http://www.ee.surrey.ac.uk/Projects/Labview/Sequential/Course/02-Hazards/hazards.htm#Static
http://www.ee.surrey.ac.uk/Projects/Labview/Sequential/Course/02-Hazards/hazards.htm#DynamicHazards
http://www.ee.surrey.ac.uk/Projects/Labview/Sequential/Course/02-Hazards/hazards.htm#FunctionHazards
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If we first look at the starting diagram, it is clear that if no delays were to occur, then the circuit 
would function normally. However, no two gates are ever manufactured exactly the same. Due 
to this imperfection, the delay for the first AND gate will be slightly different than its 
counterpart. Thus an error occurs when the input changes from 111 to 011. i.e. when X1 
changes state. 

Now we know roughly how the hazard is occurring, for a clearer picture and the solution on 
how to solve this problem, we would look to the Karnaugh map. The two gates are shown by 
solid rings, and the hazard can be seen under the dashed ring. A theorem proved by 
Huffman[1] tells us that by adding a redundant loop 'X2X3' this will eliminate the hazard. 

So our original function is now: f = X1 * X2 + X1' * X3 + X2 * X3 

Now we can see that even with imperfect logic elements, our example will not show signs of 
hazards when X1 changes state. This theory can be applied to any logic system. Computer 
programs deal with most of this work now, but for simple examples it is quicker to do the 
debugging by hand. When there are many input variables (say 6 or more) it will become quite 
difficult to 'see' the errors on a Karnaugh map. 

 

Definition:- "When one input variable changes, the output changes momentarily when it 
shouldn't" 

This particular type of hazard is usually due to a NOT gate within the logic. We can see the 
effects of the delay in the circuit from the following flash animation. 

 The hazard can be dealt with in two ways: 

1. Insert another (additional) delay to the circuit. This then eliminates the static hazard. 
2. Eliminate the hazard by inserting more logic to counteract the effects (Note this makes 

assumptions that the logic will fail) 

The first case is the most used of the two options. This is because it does not make assumptions 
about the logic, instead the method adds redundancy to overcome the hazard. 

To solve the hazard we shall use our previous example and apply a theory that 'Huffman' 
discovered.The insertion of a redundant loop can elimate a static hazard. 

In the next example, it will also be evident that there will not be a situation where a static '0' 
occurs. A static '0' hazard is one which briefly goes to '1' when it should remain at '0'. A static '1' 
hazard is the reverse of this situation, i.e. the output should remain at '1' yet under some 
condition it briefly changes state to '0' (something we shall see in the following example).. 

Example of Static Hazards 
The Static '1' Hazard. 

https://en.wikipedia.org/wiki/Karnaugh_map
https://en.wikipedia.org/wiki/Hazard_(logic)#cite_note-1


MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                           DEPT OF ECE 

 

DIGITAL SYSTEM DESIGN Page 55 
 

Let us consider an imperfect circuit that suffers from a delay in the physical logic elements i.e. 
AND gates etc. 

 

 

Transition cube [m1,m2]: set of all minterms that can be reached from minterm m1 and ending 
at minterm m2 
Example: Transition cube [010,100] contains: 000, 010, 100, 110 Required cube: transition cube 
that must be included in some product of 
the sum-of-products realization in order to get rid of the static-1logic hazard 
Example: Required cube is [011,111] 

 

The simple circuit performs the function: 

f = X1.X2 + X1'.X3 and the logic diagram can be shown as follows: 
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Now we know roughly how the hazard is occuring, for a clearer picture and the solution on how 
to solve this problem, we look to the Karnaugh Map: 

 

This Karnaugh Map shows the circuit. The two gates are shown by solid rings, and the hazard 
can be seen under the dashed ring. The theory proved by Huffman tells us that by adding a 
redundant loop 'X2X3' this will eliminate the hazard. So the resulting logic is of the form shown 
in the next figure. 

 

So our original function is now: f =X1.X2 + X1'.X3 + X2.X3 

static-0 hazard  
 
The output should be 0 but goes momentary to 1 as a result of an input change.A static-0 
hazard occurs in OR-AND circuits when an input variable and its complement are connected to 
two different OR gates. 
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• The procedure to find and eliminate static-0 hazards using K-maps is done in a dual way to 
finding static-1 hazards. 
• Static-0 hazards are found using kmaps by finding adjacent 0 cells that are covered by 
different sum terms. 
• To eliminate static-0 hazards, additional sum terms (prime implicates) are needed to cover 
such cells thus covering the transition of the variable causing the hazard. 

 

\ 
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static-1 hazard 
 A static-1 hazard exists in the following AND-OR circuit when A = 1, C = 1 and B changes from 1 
to 0 (assume all gates have propagation delay D ): 

 
Static-1 hazards are found using k-maps by finding 
adjacent 1 cells that are covered by different product terms. 

> To eliminate static-1 hazards,additional product terms (prime implicants) are needed to 
coversuch cells thus covering the transition of the  variable causing the hazard.>For in the 

previous example the static-1 hazard is eliminated by including the additional product term AC 
Grouping the adjacent 1's in the two 

groups)  
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Now we can see that even with imperfect logic elements, our example will not show signs of 

hazards when X1 changes state. This theory can be applied to any logic system. omputer 

programs deal with most of this work now, but for simple examples it is quicker to do the 

debugging by hand. When there are many input variables (say 6 or moreDynamic Hazards 

Definition:- "A dynamic hazard is the possibility of an output changing more than once as a 
result of a single input change" 
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Dynamic hazards often occur in larger logic circuits where there are different routes to the 
output (from the input). If each route has a different delay, then it quickly becomes clear that 
there is the potential for changing output values that differ from the required / expected 
output. 
e.g. A logic circuit is meant to change output state from '1' to '0', but instead changes from '1' 
to '0' then '1' and finally rests at the correct value '0'. This is a dynamic hazard. 

As we shall see, dynamic hazards take a more complex method to resolve (which we shall not 
cover). Let us explain this more with a slide show.  

Function Hazards 

Function hazards are non-solvable hazards which occurs when more than one input variable 
changes at the same time. Hazards such as function hazards can not be logically eliminated as 
the problem lies with actual specification of the circuit. The only real way to avoid such 
problems is to restrict the changeing of input variables so that only one input should change at 
any given time.Restrictions are not always possible, for instance let us imagine some logic 
circuit that has two inputs. One input is used for a clock signal, and the other is connected to a 
random noise source that we wish to measure. It should be clear that restrictions in this case 
would not be an effective solution.  

The simplest example of this is the exclusive-or function. 

 

In this scenerio it is quite difficult to see how a hazard could occur if the circuit is built up on the 
same couple of chips. However let us imagine that some circuit designer has split this function 
across different chips (i.e. one NOT gate on one chip and the other NOT gate is implemented on 
another chip across the PCB somewhere) 
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Let us setup the initial state of our circuit. A = 1, B = 0. Now lets say there is a delay in the NOT 
gate marked (X). The inputs now change simultaneuoulsy so that A = 0 and B = 1 (remember in 
a equally delayed circuit or a perfect circuit, the circuit output would match the specification). 
If we observe what the circuit should do, and do not change the output of the NOT gate X (this 
simulates a delay in gate X), it should be clear that the output of the circuit changes. Now we 
change the output of NOT gate X and the circuit goes back to the proper state. 

The most effective way to solve this hazard would be to carefully design the PCB so that delays 
are all equal, or at least match the delays on each path. i.e. Delay of A's path = Delay of B's path. 
Yet adding more gates to the circuit by the same methods as descibed in dynamic and static 
hazards will not work as Huffmans method cannot be applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ee.surrey.ac.uk/Projects/Labview/Sequential/Course/02-Hazards/hazards.htm#Huffman
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UNIT III 

Digital Design 

Programmable Logic Devices 
Read Only Memory (ROM) - a fixed array of AND gates and a programmable array of OR gates 
_ Programmable Array Logic (PAL) - a programmable array of AND gates feeding a fixed array of 
OR gates. 
_ Programmable Logic Array (PLA) - a programmable array of AND gates feeding a programmable 
array of OR gates. 
_ Complex Programmable Logic Device (CPLD) /Field- Programmable Gate Array (FPGA) - 
complex enough to be called “architectures” 

 
READ ONLY MEMORY 
_ Read Only Memories (ROM) or Programmable Read Only Memories (PROM) have: 
• N input lines, 
• M output lines, and 
• 2N decoded minterms. 
_ Fixed AND array with 2N outputs implementing all N-literal minterms. 
_ Programmable OR Array with M outputs lines to form up to M sum of minterm expressions. 
_ A program for a ROM or PROM is simply a multiple-output truth table 
• If a 1 entry, a connection is made to the corresponding minterm for the corresponding 
output 
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• If a 0, no connection is made 
_ Can be viewed as a memory with the inputs as addresses of data (output values), hence ROM or 
PROM names! 

 
Depending on the programming technology and approaches, read-only memories have different 
names 
1. ROM – mask programmed 
2. PROM – fuse or antifuse programmed 
3. EPROM – erasable floating gate programmed 
4. EEPROM or E2PROM – electrically erasable floating gate programmed 
5. FLASH memory: electrically erasable floating gate with multiple erasure and programming 
modes. 
_ Example: A 8 X 4 ROM (N = 3 input lines, M= 4 output lines) 
• The fixed "AND" array is a “decoder” with 3 inputs and 8 outputs implementing minterms. 
• The programmable "OR“ array uses a single line to represent all inputs to an OR gate. An 
“X” in the array corresponds to attaching the minterm to the OR 
• Read Example: For input (A2,A1,A0) = 011, output is (F3,F2,F1,F0 ) = 0011. 
• What are functions F3, F2 , F1 and F0 in terms of (A2, A1, A0)? 
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PROGRAMMABLE LOGIC ARRAY (PLA) 

A programmable logic array (PLA) is a kind of programmable logic device used to implement combinational 
logic circuits. The PLA has a set of programmable and gate planes, which link to a set of programmable or 
gateplanes, which can then be conditionally complemented to produce an output. It has 2^n and gates for n 
input variables and for m outputs from PLA, there should be m or gates, each with programmable inputs 
from all of the and gates. This layout allows for a large number of logic functions to be synthesized in the sum 
of products canonical forms. PLAs differ from programmable array logic devices (pals and gals) in that both 
the and and or gate planes are programmable. 

 

PLA schematic example 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Electrical_network
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/Canonical_form_(Boolean_algebra)
https://en.wikipedia.org/wiki/Programmable_Array_Logic
https://en.wikipedia.org/wiki/Programmable_Array_Logic
https://en.wikipedia.org/wiki/Generic_array_logic
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Compared to a ROM and a PAL, a PLA is the most flexible having a programmable set of ANDs 
combined with a programmable set of ORs. 
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Advantages 
• A PLA can have large N and M permitting implementation of equations that are impractical 
for a ROM (because of the number of inputs, N, required 
• A PLA has all of its product terms connectable to all outputs, overcoming the problem of 
the limited inputs to the PAL Ors 
• Some PLAs have outputs that can be complemented, adding POS functions 
_ Disadvantages 
• Often, the product term count limits the application of a PLA. 
• Two-level multiple-output optimization is required to reduce the number of product terms 
in an implementation, helping to fit it into a PLA. 
• Multi-level circuit capability available in PAL not available in PLA. PLA requires external 
connections to do multi-level circuits. 
Programmable Logic Array Example 
F1=AB’ + AC + A’BC’ 
F2= (AC+BC)’ 

 
Example:Implementing a Combinational Circuit Using a PLA 
F1(A,B,C)= Σm(3,5,6,7) 
F2(A,B,C)= Σm(1,2,3,7) 
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PROGRAMMABLE ARRAY LOGIC (PAL) 

The PAL is the opposite of the ROM, having a programmable set of ANDs combined with fixed 
ORs. A given column of the OR array has access to only a subset of the possible product terms 
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_ Disadvantage 
• ROM guaranteed to implement any M functions of N inputs. PAL may have too few inputs 
to the OR gates. 
_ Advantages 
• For given internal complexity, a PAL can have larger N and M 
• Some PALs have outputs that can be complemented, adding POS functions 
• No multilevel circuit implementations in ROM (without external connections from output 
to input). PAL has outputs from OR terms as internal inputs to all AND terms, making 
implementation of multi-level circuits easier. 
Programmable Array Logic Example 
_ 4-input, 3-output PAL with fixed, 3-input OR terms 
_ What are the equations for F1 through F4? W(A,B,C,D) = Σm (2,12,13) 
X(A,B,C,D) = Σm (7,8,9,10,11,12,13,14,15) 
Y(A,B,C,D) = Σm (0,2,3,4,5,6,7,8,10,11,15) 
Z(A,B,C,D) = Σm (1,2,8,12,13) 
Simplifying the four function to a minimum number of terms results in the following Boolean 
functions 
W= ABC’+A’B’CD’ 
X = A+BCD 
Y = A’B+CD+B’D’ 
Z = ABC’+A’B’CD’+AC’D’+A’B’C’D = W+AC’D’+A’B’C’D 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                           DEPT OF ECE 

 

DIGITAL SYSTEM DESIGN Page 72 
 

 
 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                           DEPT OF ECE 

 

DIGITAL SYSTEM DESIGN Page 73 
 

 

 

 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                           DEPT OF ECE 

 

DIGITAL SYSTEM DESIGN Page 74 
 

 

 

 

 

 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                           DEPT OF ECE 

 

DIGITAL SYSTEM DESIGN Page 75 
 

 

 

 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                           DEPT OF ECE 

 

DIGITAL SYSTEM DESIGN Page 76 
 

 

 

 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                           DEPT OF ECE 

 

DIGITAL SYSTEM DESIGN Page 77 
 

 

 

 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                           DEPT OF ECE 

 

DIGITAL SYSTEM DESIGN Page 78 
 

 

 

 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                           DEPT OF ECE 

 

DIGITAL SYSTEM DESIGN Page 79 
 

 

 

 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY                                                                                           DEPT OF ECE 

 

DIGITAL SYSTEM DESIGN Page 80 
 

 

 

 

Adder Design 

A ripple-carry adder works in the same way as pencil-and-paper methods of addition. Starting at the 

rightmost (least significant) digit position, the two corresponding digits are added and a result 

obtained. It is also possible that there may be a carry out of this digit position (for example, in 

pencil-and-paper methods, "9+5=4, carry 1"). Accordingly, all digit positions other than the 

rightmost need to take into account the possibility of having to add an extra 1, from a carry that has 

come in from the next position to the right. 

This means that no digit position can have an absolutely final value until it has been established 

whether or not a carry is coming in from the right. Moreover, if the sum without a carry is 9 (in 

pencil-and-paper methods) or 1 (in binary arithmetic), it is not even possible to tell whether or not a 

given digit position is going to pass on a carry to the position on its left. At worst, when a whole 

sequence of sums comes to ...99999999... (in decimal) or ...11111111... (in binary), nothing can be 
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deduced at all until the value of the carry coming in from the right is known, and that carry is then 

propagated to the left, one step at a time, as each digit position evaluated "9+1=0, carry 1" or 

"1+1=0, carry 1". It is the "rippling" of the carry from right to left that gives a ripple-carry adder its 

name, and its slowness. When adding 32-bit integers, for instance, allowance has to be made for 

the possibility that a carry could have to ripple through every one of the 32 one-bit adders. 

Carry lookahead depends on two things: 

1. Calculating, for each digit position, whether that position is going to propagate a carry if one 

comes in from the right. 

2. Combining these calculated values to be able to deduce quickly whether, for each group of 

digits, that group is going to propagate a carry that comes in from the right. 

Supposing that groups of four digits are chosen. Then the sequence of events goes something like 

this: 

1. All 1-bit adders calculate their results. Simultaneously, the lookahead units perform their 

calculations. 

2. Suppose that a carry arises in a particular group. Within at most five gate delays, that carry 

will emerge at the left-hand end of the group and start propagating through the group to its 

left. 

3. If that carry is going to propagate all the way through the next group, the lookahead unit 

will already have deduced this. Accordingly, before the carry emerges from the next group, 

the lookahead unit is immediately (within one gate delay) able to tell the next group to the 

left that it is going to receive a carry – and, at the same time, to tell the next lookahead unit 

to the left that a carry is on its way. 

The net effect is that the carries start by propagating slowly through each 4-bit group, just as in a 

ripple-carry system, but then move four times as fast, leaping from one lookahead carry unit to the 

next. Finally, within each group that receives a carry, the carry propagates slowly within the digits in 

that group. 

The more bits in a group, the more complex the lookahead carry logic becomes, and the more time 

is spent on the "slow roads" in each group rather than on the "fast road" between the groups 

(provided by the lookahead carry logic). On the other hand, the fewer bits there are in a group, the 

more groups have to be traversed to get from one end of a number to the other, and the less 

acceleration is obtained as a result. 
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Deciding the group size to be governed by lookahead carry logic requires a detailed analysis of gate 

and propagation delays for the particular technology being used. 

It is possible to have more than one level of lookahead carry logic, and this is in fact usually done. 

Each lookahead carry unit already produces a signal saying "if a carry comes in from the right, I will 

propagate it to the left", and those signals can be combined so that each group of (let us say) four 

lookahead carry units becomes part of a "supergroup" governing a total of 16 bits of the numbers 

being added. The "supergroup" lookahead carry logic will be able to say whether a carry entering 

the supergroup will be propagated all the way through it, and using this information, it is able to 

propagate carries from right to left 16 times as fast as a naive ripple carry. With this kind of two-

level implementation, a carry may first propagate through the "slow road" of individual adders, 

then, on reaching the left-hand end of its group, propagate through the "fast road" of 4-bit 

lookahead carry logic, then, on reaching the left-hand end of its supergroup, propagate through the 

"superfast road" of 16-bit lookahead carry logic. 

Again, the group sizes to be chosen depend on the exact details of how fast signals propagate 

within logic gates and from one logic gate to another. 

For very large numbers (hundreds or even thousands of bits), lookahead carry logic does not 

become any more complex, because more layers of supergroups and supersupergroups can be 

added as necessary. The increase in the number of gates is also moderate: if all the group sizes are 

four, one would end up with one third as many lookahead carry units as there are adders. However, 

the "slow roads" on the way to the faster levels begin to impose a drag on the whole system (for 

instance, a 256-bit adder could have up to 24 gate delays in its carry processing), and the mere 

physical transmission of signals from one end of a long number to the other begins to be a problem. 

At these sizes, carry-save adders are preferable, since they spend no time on carry propagation at 

all. 

 

 

A carry-lookahead adder (CLA) or fast adder is a type of adder used indigital logic. A carry-

lookahead adder improves speed by reducing the amount of time required to determine carry bits. 

It can be contrasted with the simpler, but usually slower, ripple carry adder for which the carry bit is 

calculated alongside the sum bit, and each bit must wait until the previous carry has been 

calculated to begin calculating its own result and carry bits (see adder for detail on ripple carry 

adders). The carry-lookahead adder calculates one or more carry bits before the sum, which 

https://en.wikipedia.org/wiki/Carry-save_adder
https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Digital_logic
https://en.wikipedia.org/wiki/Ripple_carry_adder
https://en.wikipedia.org/wiki/Adder_(electronics)
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reduces the wait time to calculate the result of the larger value bits. The Kogge-Stone 

adder and Brent-Kung adder are examples of this type of adder.  

 

https://en.wikipedia.org/wiki/Kogge-Stone_adder
https://en.wikipedia.org/wiki/Kogge-Stone_adder
https://en.wikichip.org/wiki/Brent-Kung_adder
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Unit-IV 

Faults in Digital Circuits 
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path sensitization method  

Fault sensitization: In this step a stuck-at fault is activated by setting the signal driving the faulty net to an 
opposite value from the fault value. 

1. Fault propagation: In this step a path is selected from the fault site to some primary output, where 
the effect of the fault can be observed for its detection. 

2. Line justification: In this step the signals in (internal) nets or some primary inputs, which were 
assigned for fault sensitization/propagation, are justified by setting (remaining) primary inputs of the circuit. 

In the second and third steps, a conflict may occur, where a necessary signal assignment contradicts some 
previously-made assignment. When conflicts occur we need to take a new alternative path for fault 
propagation and see if all signals can be justified.  
We have seen some simple examples for ATPG using the path sensitization (sensitization-propagation-
justification) approach in the last module. Now we will see a bit more complex example of ATPG using the 
path sensitization approach. However, instead of using Boolean algebra (as in last module), we will use Roth’s 
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5 valued algebra. Following that, in the next lecture we will learn D-algorithm--the primary and formal 
algorithm for ATPG using path sensitization. 

As shown in Figure 4 (a), there is a s-a-0 fault in input b. To sensitize the fault, simply b is to be made 1.  Now 
let us take the path “e-f-g-h” for propagating the effect to the output h.  The signals in the nets of the path, in 
terms of Roth’s 5 valued algebra, are shown in Figure 4(a). It may be noted that we have successfully 

propagated  to the output; it implies that the fault can be propagated to the output using the path 
selected. Now let us justify the signals, by setting the inputs of the gates in the path selected (for fault 
propagation), but not themselves being in the path, to non-controlling values. For example, net j, is a input to 
the OR gate that is in the path selected for fault propagation, but j is not itself in the path; so j is to be 0. 
Similarly, d is to be 1, and a is to be 1. However, it must be noted that j cannot be made 0; 
if c=1 then j =D and if c = 0then j = 1. So we have reached a conflict at j; Figure 4(b). Now we must backtrack 
and select a new path for propagation. 

 

Figure 4. Illustration of backtrack in path sensitization based ATPG 
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Figure 5 shows the ATPG if the new path is “i-j-g-h”.  Figure 5 (a) shows the values in the nets required to 
propagate the fault to the output. In the new path we have again successfully propagated the fault to the 

output, but now a D is obtained instead of  (as in the previous case}. This implies that the fault can be 
propagated to the output using the new path, however, the reflection of the effect is reversed. To justify the 
signals, we require d=1, c=1, f=0. f=0 is easily obtained by setting a=0. So we have successfully, justified the 
signals if the path is “i-j-g-h”; test pattern is a=0,b=1,c=1, d=1 and effect at output is D.  

 

Figure 5. Successfully found test pattern in an alternative path (circuit of Figure 4) 
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Boolean Difference method 

 

Conceptual View of ATPG 
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Unit V 

SM Charts 

Algorithmic State Machines: 

 

 The binary information stored in the digital system can be classified as either data or control information. 
 

 

 The data information is manipulated by performing arithmetic, logic, shift and other data processing 
tasks. 

 
 

 The control information provides the command signals that controls the various operations on the data in 
order to accomplish the desired data processing task. 

  

 Design a digital system we have to design two subsystems data path subsystem and control subsystem. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
ASM CHART: 

 

 A special flow chart that has been developed specifically to define digital hardware algorithms is called 
ASM chart. 

  

 A hardware algorithm is a step by step procedure to implement the desire task. 
 

 
Difference b/n conventional flow chart and ASM chart: 

 

 conventional flow chart describes the sequence of procedural steps and decision paths for an algorithm 
without concern for their time relationship 

  

 An ASM chart describes the sequence of events as well as the timing relationship b/n the 
states of sequential controller and the events that occur while going from one state to the 
next 

 

Basic Components of ASM charts 

Following are the three basic components of ASM charts. 

 State box 
 Decision box 
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 Conditional output box 

State box 

State box is represented in rectangular shape. Each state box represents one state of the 
sequential circuit. The symbol of state box is shown in the following figure. 

 

It is having one entry point and one exit point. Name of the state is placed to the left of state 
box. The unconditional outputs corresponding to that state can be placed inside state box. 
Moore state machine outputs can also be placed inside state box. 

Decision box 

Decision box is represented in diamond shape. The symbol of decision box is shown in the 
following figure.  
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It is having one entry point and two exit paths. The inputs or Boolean expressions can be placed 
inside the decision box, which are to be checked whether they are true or false. If the condition 
is true, then it will prefer path1. Otherwise, it will prefer path2. 

Conditional output box 

Conditional output box is represented in oval shape. The symbol of conditional output box is 
shown in the following figure. 

 

It is also having one entry point and one exit point similar to state box. The conditional outputs 
can be placed inside state box. In general, Mealy state machine outputs are represented inside 
conditional output box. So, based on the requirement, we can use the above components 
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properly for drawing ASM charts. 
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Binary Multiplier: 

 

 

 

 

Data path subsystem for binary multiplier 
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