
MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 1

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DIGITAL NOTES ON

DIGITAL SYSTEM DESIGN
FOR

III/IV B.TECH I SEMESTER

PREPARED BY:
PATIBANDLA ANITHA

ASSOCIATE PROFESSOR,
DEPT. OF ECE

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 2

III Year B.Tech I Sem L T/P/D C
 3 1/-/- 3
 CORE ELECTIVE-I
 (R15A0411)DIGITAL SYSTEM DESIGN

OBJECTIVES:
This course provides in depth knowledge digital system design of digital circuits, which is the
basis for design of any digital circuit. The main objectives are:

 To design and analysis of sequential circuits.
 To impart to student the concepts of sequential circuits, enabling them to analyze

sequential systems in terms of state machines.
 To understand about the SM charts and their realization

 To implement synchronous state machines using flip-flops.

 To detect the fault models in sequential circuits.

UNIT -I: Minimization and Transformation of Sequential Machines: The Finite State Model –
Capabilities and limitations of FSM –State equivalence and machine minimization –
Simplification of incompletely specified machines-Merger chart methods-Concept of Minimal
Cover Table-Compatibility Graph.

UNIT -II: Fundamental mode model –Flow table –State reduction –Excitation and output
Tables-Primitive Flow Table-Hazards-Design of Hazard free circuits.

UNIT III: Digital Design: Digital Design Using ROMs, PALs, BCD Adder, 32 –bit adder-PLA-PLA
minimization-PLA Folding-Simple column folding-Problems.

UNIT -IV: Faults in Digital Circuits: Failures and Faults-Modelling of Faults-Single stuck at
fault model –Multiple stuck at fault models –Stuck Open Faults-Bridging fault model. Fault
diagnosis of combinational circuits by conventional methods –Path sensitization techniques,
Boolean Difference method –Kohavi algorithm-examples.

UNIT -V: SM Charts: State machine charts, Derivation of SM Charts, Realization of SM Chart,
Implementation of Dice Game, and Binary Multiplier.

TEXT BOOKS:

1. Fundamentals of Logic Design –Charles H. Roth, 5th Ed., Cengage Learning.
2. Switching Theory and Logic Design –A. Anand Kumar, PHI
3. Logic Design Theory –N. N. Biswas, PHI

REFERENCE BOOKS:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 3

1. Switching and Finite Automata Theory –Z. Kohavi , 2 nd Ed., 2001, TMH
2. Digital Design –Morris Mano, M.D.Ciletti, 4th Edition, PHI.
3. Digital Circuits and Logic Design –Samuel C. Lee , PHI
4. Fault tolerant and fault testable hardware design Parag K. Lala

OUTCOMES
Upon completion of the course, the student will be able to:

 Design and analysis of sequential circuits.
 Understand the concepts of sequential circuits, enabling them to analyze sequential

systems in terms of state machines.
 Understand about the SM charts and their realization

 Implement synchronous state machines using flip-flops.

 Detect the fault models in sequential circuits.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 4

UNIT -I

Minimization and Transformation of Sequential Machines

Finite State Machines

For a sequential logic system number of outputs (no) depend on the present and past, values
of the inputs. Sequential logic systems are known as as finite-state machines (FSMs). FSMs
are considered to have a number of internal states, which are determined by some
combination of values of the ns state variables if— The FSM changes to a new state
depending upon the present state and the inputs. The outputs depend on the present state
and the inputs (Mealy machine) or just the present state (Moore machine).

There are two types of FSMs, synchronous FSM and asynchronous FSM.

Synchronous FSM:

(The operation of a synchronous FSM is carried out by using a clock. At each clockâ€™event
the state changes to a new state which is determined by the present state and inputs.

Asynchronous FSM:

Asynchronous sequential systems do not have clock and the internal states changes
depending upon the change in inputs. Asynchronous FSMs are mainly used where a fast
response to input changes. Asynchronous FSMs are also used where the introduction of extra
frequency components related to the clock should be avoided.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 5

FSM is a type of sequential circuit which is designed to sequence through the finite states in a
predetermined sequential manner. An FSM consists of three parts:

(1) Sequential current state register

(2) Combinational next state logic

(3) Combinational output logic

(1) Sequential current state register:

In this register set of n-bit flip-flops are used and are clocked by clock signal to hold the state
vector of the FSM. For the state vector of n-bit 2n possible binary patterns are used for state
encoding.

(2) Combinational next state logic:

As we know that, the FSM stays in a single state and at each active transition it changes from
the current state to the next state. The next state is always a function of the inputs and its
current state.

(3) Combinational output logic:

Outputs in FSM seem to be the function of the current state and primary inputs. Generally in
a Moore FSM, the user wants to derive the outputs from the next state. We know that

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 6

synchronous sequential circuits change (affect) their states for every positive (or negative)
transition of the clock signal based on the input. So, this behavior of synchronous sequential
circuits can be represented in the graphical form and it is known as state diagram.

A synchronous sequential circuit is also called as Finite State Machine (FSM), if it has finite
number of states. There are two types of FSMs.

 Mealy State Machine
 Moore State Machine

Now, let us discuss about these two state machines one by one.

Mealy State Machine

A Finite State Machine is said to be Mealy state machine, if outputs depend on both present
inputs & present states. The block diagram of Mealy state machine is shown in the following
figure.

As shown in figure, there are two parts present in Mealy state machine. Those are
combinational logic and memory. Memory is useful to provide some or part of previous
outputs (present states) as inputs of combinational logic.

So, based on the present inputs and present states, the Mealy state machine produces
outputs. Therefore, the outputs will be valid only at positive (or negative) transition of the
clock signal.

The state diagram of Mealy state machine is shown in the following figure.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 7

In the above figure, there are three states, namely A, B & C. These states are labelled inside
the circles & each circle corresponds to one state. Transitions between these states are
represented with directed lines. Here, 0 / 0, 1 / 0 & 1 / 1 denotes input / output. In the above
figure, there are two transitions from each state based on the value of input, x.

In general, the number of states required in Mealy state machine is less than or equal to the
number of states required in Moore state machine. There is an equivalent Moore state
machine for each Mealy state machine.

Moore State Machine

A Finite State Machine is said to be Moore state machine, if outputs depend only on present
states. The block diagram of Moore state machine is shown in the following figure.

As shown in figure, there are two parts present in Moore state machine. Those are
combinational logic and memory. In this case, the present inputs and present states
determine the next states. So, based on next states, Moore state machine produces the
outputs. Therefore, the outputs will be valid only after transition of the state.

The state diagram of Moore state machine is shown in the following figure.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 8

In the above figure, there are four states, namely A, B, C & D. These states and the respective
outputs are labelled inside the circles. Here, only the input value is labeled on each transition.
In the above figure, there are two transitions from each state based on the value of input, x.

In general, the number of states required in Moore state machine is more than or equal to
the number of states required in Mealy state machine. There is an equivalent Mealy state
machine for each Moore state machine. So, based on the requirement we can use one of
them.

Finite State Machine:

Finite state machine can be defined as a type of machine whose past histories can affect its
future behavior in a finite number of ways. To clarify, consider for example of binary full
adder. Its output depends on the present input and the carry generated from the previous
input. It may have a large number of previous input histories but they can be divided into two
types: (i) Input

The most general model of a sequential circuit has inputs, outputs and internal states. A
sequential circuit is referred to as a finite state machine (FSM). A finite state machine is
abstract model that describes the synchronous sequential machine. The fig. shows the block
diagram of a finite state model. X1, X2,….., Xl, are inputs. Z1, Z2,….,Zm are outputs.
Y1,Y2,….Yk are state variables, and Y1,Y2,….Yk represent the next state.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 9

Capabilities and limitations of finite-state machine

Let a finite state machine have n states. Let a long sequence of input be given to the
machine. The machine will progress starting from its beginning state to the next states
according to the state transitions. However, after some time the input string may be longer
than n, the number of states. As there are only n states in the machine, it must come to a
state it was previously been in and from this phase if the input remains the same the machine
will function in a periodically repeating fashion. From here a conclusion that ‗for a n state
machine the output will become periodic after a number of clock pulses less than equal to n
can be drawn. States are memory elements. As for a finite state machine the number of
states is finite, so finite number of memory elements are required to design a finite state
machine.

Limitations:

 1.Periodic sequence and limitations of finite states: with n-state machines, we can generate
periodic sequences of n states are smaller than n states. For example, in a 6-state machine,
we can have a maximum periodic sequence as 0,1,2,3,4,5,0,1….

 2.No infinite sequence: consider an infinite sequence such that the output is 1 when and only
when the number of inputs received so far is equal to P(P+1)/2 for P=1,2,3….,i.e., the
desired input-output sequence has the following form:

Input: x x x x x x x x x x x x x x x x x x x x x x

Output: 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

Such an infinite sequence cannot be produced by a finite state machine.
 3.Limited memory: the finite state machine has a limited memory and due to limited memory it

cannot produce certain outputs. Consider a binary multiplier circuit for multiplying two

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 10

arbitrarily large binary numbers. The memory is not sufficient to store arbitrarily large partial
products resulted duringmultiplication.

Finite state machines are two types. They differ in the way the output is generate they are:
 1. Mealy type model: in this model, the output is a function of the present state and the

present input.

2. Moore type model: in this model, the output is a function of the present state only.

Mathematical representation of synchronous sequential machine:
The relation between the present state S(t), present input X(t), and next state s(t+1) can be

given as
S(t+1)= f{S(t),X(t)}
The value of output Z(t) can be given as

Z(t)= g{S(t),X(t)} for mealy model

Z(t)= G{S(t)}
for Moore
model

Because, in a mealy machine, the output depends on the present state and input, where as
in a Moore machine, the output depends only on the present state.

Comparison between the Moore machine and mealy machine:

 Moore machine mealy machine

 1. its output is a function of present 1. its output is a function of present state
 state only Z(t)= g{S(t)} as well as present input Z(t)=g{S(t),X(t)}

 2. input changes do not affect the 2. input changes may affect the output of
 output the circuit

 3. it requires more number of states 3. it requires less number of states for

for implementing same function implementing same function

Mealy model:

When the output of the sequential circuit depends on the both the present state of the

flip-flops and on the inputs, the sequential circuit is referred to as mealy circuit or mealy
machine.
The fig. shows the logic diagram of the mealy model. Notice that the output depends up on
the present state as well as the present inputs. We can easily realize that changes in the input
during the clock pulse cannot affect the state of the flip-flop. They can affect the output of
the circuit. If the input variations are not synchronized with a clock, he derived output will
also not be synchronized with the clock and we get false output. The false outputs can be
eliminated by allowing input to change only at the active transition of the clock.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 11

Fig: Logic diagram of a Mealy model

The behavior of a clocked sequential circuit can be described algebraically by means of state
equations. A state equation specifies the next state as a function of the present state and
inputs. The mealy model shown in fig. consists of two D flip-flops, an input x and an output z.
since the D input of a flip-flop determines the value of the next state, the state equations for
the model can be written as

And the output equation is

Z(t)={ y1(t)+y2(t)} X’(t)
Where y(t+1) is the next state of the flip-flop one clock edge later, x(t) is the present input,
and z(t) is the present output. If y1(t+1) are represented by y1(t) and y2(t) , in more compact
form, the equations are

Y1(t+1) = y1=y1x+y2x
Y2 (t+1) =
y2=y1’x
Z = (y1+y2) x’

The stable table of the mealy model based on the above state equations and output
equation is shown in fig. the state diagram based on the state table is shown in fig.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 12

In general form, the mealy circuit can be represented with its block schematic as shown in
below fig.

Moore model:
 when the output of the sequential circuit depends up only on the present state of the flip-
flop, the sequential circuit is referred as to as the Moore circuit or the Moore
machine.Notice that the output depend only on the present state. It does not depend upon
the input at all. The input is used only to determine the inputs of flip-flops. It is not used to
determine the output. The circuit shown has two T flip-flops, one input x, and one output z.
it can be described algebraically by two input equations an output equation.

T1=
y2x
T2=
x
Z=y
1y2

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 13

The characteristic equation of a T-flip-flop is
Q(t+1)=TQ‘+T‘Q

The values for the next state can be derived from the state equations by substituting T1 and
T2 in the characteristic equation yielding

The state table of the Moore model based on the above state equations and output
equation is shown in fig.

In general form , the Moore circuit can be represented with its block schematic as shown
in below fig.

Figure: Moore circuit model:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 14

Figure: Moore circuit model with an output decoder

Important definitions and theorems:
A). Finite state machine-definitions:

Consider the state diagram of a finite state machine shown in fig. it is five-state machine
with one input variable and one output variable.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 15

Successor: looking at the state diagram when present state is A and input is 1, the next state is
D. this condition is specified as D is the successor of A. similarly we can say that A is the 1
successor of B, and C,D is the 11 successor of B and C, C is the 00 successor of A and D, D is the
000 successor of A,E, is the 10 successor of A or 0000 successor of A and so on.

Terminal state: looking at the state diagram , we observe that no such input sequence exists
which can take the sequential machine out of state E and thus state E is said to be a terminal
state.

Strongly-connected machine: in sequential machines many times certain subsets of states may
not be reachable from other subsets of states. Even if the machine does not contain any
terminal state. If for every pair of states si, sj, of a sequential machine there exists an input
sequence which takes the machine M from si to sj, then the sequential machine is said to be
strongly connected.

B). state equivalence and machine minimization:

In realizing the logic diagram from a stat table or state diagram many times we come across
redundant states. Redundant states are states whose functions can be accomplished by other
states. The elimination of redundant states reduces the total number of states of the machines
which in turn results in reduction of the number of flip-flops and logic gates, reducing the cost
of the final circuit.

Two states are said to be equivalent. When two states are equivalent, one of them can be
removed without altering the input output relationship.

State equivalence theorem: it states that two states s1, and s2 are equivalent if for every
possible input sequence applied. The machine goes to the same next state and generates the
same output. That is

If S1(t+1)= s2(t+1) and z1=z2, then s1=s2

C). Distinguishable states and distinguishing sequences:

Two states sa, and sb of a sequential machine are distinguishable, if and only if there exists at
least one finite input sequence which when applied to the sequential machine causes different
outputs sequences depending on weather sa or sb is the initial state.

Consider states A and B in the state table, when input X=0, their outputs are 0 and 1
respectively and therefore, states A and B are called 1-distinguishable. Now consider states A
and E . the output sequence is as follows.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 16

Here the outputs are different after 2-state transition and hence states A and E are 2-. Again
consider states A and C . the output sequence is as follows:

Here the outputs are different after 3- transition and hence states A and B are 3-
distinguishable. the concept of K- distinguishable leads directly to the definition of K-
equivalence. States that are not K-distinguishable are said to be K-equivalent.

Truth table for Distinguishable states:

PS NS,Z

 X=0 X=1

A C,0 F,0

B D,1 F,0
C E,0 B,0

D B,1 E,0
E D,0 B,0
F D,1 B,0

State Reduction:
The reduction of the number of flip-flops in a sequential circuit is referred to as the state
reduction problem. State-reduction algorithms are concerned with procedures for reducing the
number of states in a state table, while keeping the external input-output requirements
unchanged. Since (N) flip-flops produce (2N) states, a reduction in the number of states may (or
may not) result in a reduction in the number of flip-flops. An n predictable effect in reducing
the number of flip-flops is that sometimes the equivalent circuit (with fewer flip-flops) may
require more combinational gates.We will illustrate the state reduction procedure with an
example. We start with a sequential circuit whose specification is given in the state diagram
shown in Fig. (1). In thisexample, only the input-output sequences are important; the internal

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 17

states are used merely to provide the required sequences. For this reason, the states marked
inside the circles are denoted by letter symbols instead of their binary values. This is in constant
to a binary counter,
where the binary value sequence of the state themselves is taken as the outputs.

There are an infinite number of input sequences that may be applied to the circuit; each results
in a unique output sequence. As an example, consider the input sequence [01010110100]
starting from the initial state (a). Each input of 0 or 1 produces an output of 0 or 1 and causes
the circuit to go to the next state. the output and state sequence for the given input sequence
as follows: With the circuit in initial state (a), an input of 0 produces an output of 0 and the
circuit remains in state (a). With present state (a) and input of 1, the output is 0 and the next
state is (b). With present state (b) and input of 0, the output is 0 and next state is (c). Continuing
this process, we find the complete sequence to be as

follows:
In each column, we have the present state, input value, and output value. The next state is
written on top of the next column. It is important to realize that in this circuit, the states
themselves are of secondary importance because we are interested only in output sequences

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 18

caused by input sequences. Now let us assume that we have found a sequential circuit whose
state diagram has less than seven states and we wish to compare it with the circuit whose state
diagram is given by Fig. (1). If identical input sequences are applied to the two circuits and
identical outputs occur for all input sequences, then the two circuits are said to be equivalent
(as far as the input-output is concerned) and one may be replaced by the other. The problem of
state reduction is to find ways of reducing the number of states in a sequential circuit without
altering the input-output relationships.
We now proceed to reduce the number of states for this example. First, we need the state
table; it is more convenient to apply procedures for state reduction using a table rather than a
diagram. The state table of the circuit is listed in Table (1) and is obtained directly from the
state diagram.

An algorithm for the state reduction of a completely specified state table is given here
without proof:"Two states are said to be equivalent if, for each member of the set of inputs,
they give exactly the same output and send the circuit either to the same state or to an
equivalent state." When two states are equivalent, one of them can be removed without
altering the input-output relationships.
Now apply this algorithm to Table (1). Going through the state table, we look for two present
states that go to the same next state and have the same output for both input combinations.
States (g) and (e) are two such states: they both go to states (a & se) are equivalent and one of
these states can be removed. The procedure of removing a state and replacing it by its
equivalent is demonstrated in Table (2). The row with present state (g) is removed and state (g)
is replaced by state (e) each time it occurs in the next-state columns

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 19

Present state (f) now has next states (e and f) and outputs 0 and 1 for x=0 and x=1,respectively.
The same next states and outputs appear in the row with present (d). Therefore,states (f and d)
are equivalent and state (f) can be removed and replaced by (d). The final reduced table is
shown in Table (3). The state diagram for the reduced table consists of only five states and is

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 20

shown in Fig. (2). This state diagram satisfies the original input-output specifications and will
produce the required output sequence for any given input sequence.
The following list derived from the state diagram of Fig. (2) is for the input sequence used
previously (note that the same output sequence results, although the state sequence is
different):

In fact, this sequence is exactly the same as that obtained for Fig. (1), if we replace (g by e and f
by d).Checking each pair of states for possible equivalency can be done systematically by means
of a procedure that employs an implication table. The implication table consists of squares, one
for every suspected pair of possible equivalent states. By judicious use of the table, it is possible
to determine all pairs of equivalent states in a state table. The use of the implication table for
reducing the number of states in a state table is demonstrated in the next section.The
sequential circuit of this example was reduced from seven to five state. In general, reducing the
number of states in a state table may result in a circuit with less equipment.
However, the fact that a state table has been reduced to fewer state doesn't guarantee a saving
in the number of flip-flops or the number of gates.

Implication Table:
The state-reduction procedure for completely specified state tables is based on the algorithm
that two states in a state table can be combined into one if they can be shown to be equivalent.
Two states are equivalent if for each possible input, they give exactly the same output and go to
the same next states or to equivalent next state. Consider for example, the state table shown in
Table (4). The present states (a) and (b) have the same output for the same input. Their next
states are (c and d) for x=0 and (b and a) for x=1. If we can show that the pair of states (c, d) are
equivalent, then the pair of states (a, b) will also be equivalent because they will have the same
or equivalent next states. When this relationship exists, we say that (a, b) imply (c, d). Similarly,
from the last two rows of Table (4), we find that the pair of states (c, d) imply the pair of states
(a, b).
The characteristic of equivalent states is that if (a, b) imply (c, d) and (c, d) imply (a, b), then
both pairs of states are equivalent; that is, (a and b) are equivalent as well as (c and d). As a
consequence, the four rows of Table (4) can be reduced to two rows by combining (a and b)
into one state and (c and d) into a second state.The checking of each pair of states for possible
equivalence in a table with a large number of states can be done systematically by means of an
implication table. The implication table is a chart that consists of squares, one for every possible
pair of states, that provide spaces for listing any possible implied states. By judicious use of the
table, it is possible to determine all pairs of equivalent states. The state table of Table (5) will be
used to illustrate this procedure. The implication table is shown in Fig. (3). On the left side along
the vertical are listed all the states defined in the state table except the first, and across the
bottom horizontally are listed all the states expect the last. The result is a display of all possible

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 21

combinations of two states with a square placed in the intersection of a row and a column
where the two states can be tested for equivalence.
Two states that are not equivalent are marked with a cross (x) in the corresponding square,
whereas their equivalence recorded with a check mark (√). Some of the squares have entries of
implied states that must be further investigated to determine whether they are equivalent or
not. The step-by-step procedure of filling in the squares is as follows. First, we place a cross in
any square corresponding to a pair of states whose outputs are not equal for every input. In this
case, state (c) has a different output than any other state, so a cross is placed in the two
squares of row (c) and the four squares of column (c). There are nine other squares in this
category in the implication table.

Next, we enter in the remaining squares the pairs of states that are implied by the pair of states
representing the squares. We do that starting from the top square in the left column and going
down and then proceeding with the next column to the right. From the state table, we see that
pair (a,b) imply (d,e), so (d,e) is recorded in the square defined by column (a and row b). We
proceed in this manner until the entire table is completed. Note that states (d,e) are equivalent
because they go to the same next state and have the some output. Therefore, a check mark is
recorded in the square defined by column (d and row e), indicating that the two states are
equivalent and independent of any implied pair.
The next step is to make successive passes through the table to determine whether any
additional squares should be marked with a cross. A square in the table is crossed out if it
contains at least one implied pair that is not equivalent. For example, the square defined by (a)
and (f) is marked with a cross next to (c,d) because the pair (c,d) defines a square that contains
a cross. This procedure is repeated until no additional squares can be crossed out.
Finally, all the squares that have no crosses are recorded with check marks. These squares
define pairs of equivalent states. In this example, the equivalent states are:
(a,b) (d,e) (d,g) (e,g)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 22

We now combine pairs of states into larger groups of equivalent states. The last three pairs can
be combined into a set of three equivalent states (d,e,g) because each one of the states in the
group is equivalent to the other two. The final partition of the states consists of the equivalent
states found from the implication table, together with all the remaining states in the state table
that are not equivalent to any other state.(a,b) (c) (d,e,g) (f) This means that Table (5) can be
reduced from seven states to four states, one for each member of the above partition. The
reduced table is obtained by replacing state (b by a and states e and g by d).

Merger Diagram:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 23

Having found all the compatible pairs, the next step is to find larger sets of states that are
compatible. The maximal compatible is a group of compatibles that contains all the possible
combinations of compatible states. The maximal compatible can be obtained from a merger
diagram, as shown in Fig. (4). The merger diagram is a graph in which each state is represented
by a dot placed along the circumference of a circle. Lines are drawn between any two
corresponding dots that form a compatible pair. All possible compatibles can be obtained from
the merger diagram by observing the geometrical patterns in which states are connected to
each other. An isolated dot represents a state that is not compatible to any other state. A line
represents a compatible pair. A triangle constitutes a compatible with three states. An nstate
compatible is represented in the merger diagram by an n-state polygon with all its diagonals
connected.
The merger diagram of Fig. (4-a) is obtained from the list of compatible pairs derived from the
implication table. There are seven straight lines connecting the dots, one for each compatible
pair. The lines from a geometrical pattern consisting of two triangles connecting (a,c, d) and (b,
e, f) and a line (a, b). The maximal compatibles are:
(a,b) (a,c,d) (b,e,f)
Fig. (4-b) shows the merger diagram of an 8-state. The geometrical patterns are a rectangle
with its two diagonals connected to form the 4-state compatible (a, b, e, f), a triangle (b, c, h), a
line (c, d), and a single state (g) that is not compatible to any other state. The maximal
compatibles are:(a,b,e,f) (b,c,h) (c,d) (g)

Merger Chart Methods:

Merger graphs:

The merger graph is a state reducing tool used to reduce states in the incompletely

specified machine. The merger graph is defined as follows.
1. Each state in the state table is represented by a vertex in the merger graph. So it

contains the same number of vertices as the state table contains states.
2. Each compatible state pair is indicated by an unbroken line draw between the two state

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 24

vertices
3. Every potentially compatible state pair with non-conflicting outputs but with different

next states is connected by a broken line. The implied states are written in theline break
between the two potentially compatible states.

4. If two states are incompatible no connecting line is drawn.

Consider a state table of an incompletely specified machine shown in fig. the

corresponding merger graph shown in fig.
State table:

PS NS,Z

 I1 I2 I3 I4

A … E,1 B,1 ….

B … D,1 … F,1

C F,1 … … …
D … … C,1 …

E C,0 … A,0 F,1
F D,0 A,1 B,0 …

a) Merger graph b) simplified merger graph

States A and B have non-conflicting outputs, but the successor under input I2are compatible
only if implied states D and E are compatible. So, draw a broken line from A to B with DE written
in between states A and C are compatible because the next states and output entries of states A
and C are not conflicting. Therefore, a line is drawn between nodes A and C. states A and D have
non-conflicting outputs but the successor under input I3 are B and C. hence join A and D by a
broken line with BC entered In between.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 25

Two states are said to be incompatible if no line is drawn between them. If implied states are
incompatible, they are crossed and the corresponding line is ignored. Like, implied states D and
E are incompatible, so states A and B are also incompatible. Next, it is necessary to check
whether the incompatibility of A and B does not invalidate any other broken line. Observe that
states E and F also become incompatible because the implied pair AB is incompatible. The
broken lines which remain in the graph after all the implied pairs have been verified to be
compatible are regarded as complete lines.
After checking all possibilities of incompatibility, the merger graph gives the following seven
compatible pairs.

These compatible pairs are further checked for further compatibility. For example, pairs
(B,C)(B,D)(C,D) are compatible. So (B, C, D) is also compatible. Also pairs (A,c)(A,D)(C,D) are
compatible. So (A,C,D) is also compatible. . In this way the entire set of compatibles of
sequential machine can be generated from its compatible pairs.
To find the minimal set of compatibles for state reduction, it is useful to find what are called the
maximal compatibles. A set of compatibles state pairs is said to be maximal, if it is not
completely covered by any other set of compatible state pairs. The maximum compatible can
be found by looking at the merger graph for polygons which are not contained within any
higher order complete polygons. For example only triangles (A, C,D) and (B,C,D) are of higher
order. The set of maximal compatibles for this sequential machine given as

Example:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

 Page 26

Figure: state table

State Minimization:
Completely Specified Machines

 Two states, si and sj of machine M are distinguishable if and only if there exists a finite
input sequence which when applied to M causes different output sequences depending
on whether M started in si or sj.

 Such a sequence is called a distinguishing sequence for (si, sj).
 If there exists a distinguishing sequence of length k for (si, sj), they are said to be

k-distinguishable.

EXAMPLE:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF
ECE

 Page 27

• states A and B are 1-distinguishable, since a 1 input applied to A yields an output

1, versus an output 0 from B.
• states A and E are 3-distinguishable, since input sequence 111 applied to A yields

output 100, versus an output 101 from E.
• States si and sj (si ~ sj) are said to be equivalent iff no distinguishing sequence exists

for (si, sj).
• If si ~ sj and sj ~ sk, then si ~ sk. So state equivalence is an equivalence relation (i.e. it is

a
reflexive, symmetric and transitive relation).

• An equivalence relation partitions the elements of a set into equivalence classes.
• Property: If si ~sj, their corresponding X-successors, for all inputs X, are also equivalent.
• Procedure: Group states of M so that two states are in the same group iff they

are equivalent (forms a partition of the states).

Completely Specified Machines

Pi : partition using distinguishing sequences of length i.
Partition: Distinguishing Sequence:
P0 = (A B C D E F)
P1 = (A C E)(B D F) x =1
P2 = (A C E)(B D)(F) x =1; x =1
P3 = (A C)(E)(B D)(F) x =1; x =1; x =1
P4 = (A C)(E)(B D)(F)
Algorithm terminates when Pk = PK+1
Outline of state minimization procedure:

• All states equivalent to each other form an equivalence class. These may be
combined into one state in the reduced (quotient) machine.

• Start an initial partition of a single block. Iteratively refine this partition by
separating the 1-distinguishable states, 2-distinguishable states and so on.

• To obtain Pk+1, for each block Bi of Pk, create one block of states that not 1-
distinguishable within Bi , and create different blocks states that are 1-
distinguishable

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF
ECE

 Page 28

within Bi .
Theorem: The equivalence partition is unique.
Theorem: If two states, si and sj, of machine M are distinguishable, then they are (n-1
)-distinguishable, where n is the number of states in M.
Definition: Two machines, M1 and M2, are equivalent (M1 ~ M2) if, for every state in
M1 there is a corresponding equivalent state in M2 and vice versa.

Theorem. For every machine M there is a minimum machine Mred ~ M. Mred is unique up
to isomorphism.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 29

State Minimization: Incompletely
Specified Machines
Statement of the problem: given an incompletely specified machine M, find a machine M’
such that:

– on any input sequence, M’ produces the same outputs as M, whenever M is
specified.

– there does not exist a machine M’’ with fewer states than M’ which has the same
property

Machine M:

Attempt to reduce this case to usual state minimization of completely specified machines.

 Brute Force Method: Force the don‘t cares to all their possible values and choose the
smallest of the completely specified machines so obtained.

 In this example, it means to state minimize two completely specified machines obtained
from M, by setting the don‘t care to either 0 and 1.

Suppose that the - is set to be a 0.

 States s1 and s2 are equivalent if s3 and s2 are equivalent, but s3 and s2 assert different

outputs under input 0, so s1 and s2 are not equivalent.
 States s1 and s3 are not equivalent either.

 So this completely specified machine cannot be reduced further (3 states is the

minimum).

Suppose that the - is set to be a 1.

 j1 j2, (Qi,a) Qj1 , and

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 30

 States s1 is incompatible with both s2 and s3.
 States s3 and s2 are equivalent.
 So number of states is reduced from 3 to 2.

Machine M’’red :

Can this always be done?
Machine M:

Machine M2 and M3 are formed by filling in the unspecified entry in M with 0 and 1,
respectively.
Both machines M2 and M3 cannot be
reduced. Conclusion?: M cannot be
minimized further! But is it a correct
conclusion?
Note: that we want to ‗merge‘ two states when, for any input sequence, they generate the
same output sequence, but only where both outputs are specified.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 31

Definition: A set of states is compatible if they agree on the outputs where they are all
specified.
Machine M’’ :

In this case we have two compatible sets: A = (s1, s2) and B = (s3, s2). A reduced machine Mred
can be built as follows.

Machine Mred

A set of compatibles that cover all states is: (s3s6), (s4s6), (s1s6), (s4s5), (s2s5).
But (s3s6) requires (s4s6),

(s4s6) requires(s4s5), (s4s5) requires (s1s5), (s1s6)
requires (s1s2), (s1s2) requires (s3s6), (s2s5)
requires (s1s2).

So, this selection of compatibles requires too many other compatibles...

 Another set of compatibles that covers all states is (s1s2s5), (s3s6), (s4s5).
 But (s1s2s5) requires (s3s6) (s3s6) requires (s4s6)

 (s4s6) requires (s4s5) (s4s5) requires (s1s5).
 So must select also (s4s6) and (s1s5).
 Selection of minimum set is a binate covering problem

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 32

UNIT -II

Fundamental mode model

Analysis-of-Sequential-Circuits

Analysis of Sequential Circuits : The behaviour of a sequential circuit is determined from the
inputs, the outputs and the states of its flip-flops. Both the output and the next state are a
function of the inputs and the present state. The analysis task is much simpler than the
synthesis task. To analyze a circuit, we simply reverse the steps of synthesis process. Figure
below shows the analysis steps.

Analysis procedure of a sequential circuit:

1. We start with the logic schematic from which we can derive excitation equations for
each flip-flop input.

2. Then, to obtain next-state equations, we insert the excitation equations into the
characteristic equations.

3. The output equations can be derived from the schematic, and once we have our output
and next-state equations, we can generate the next-state and output tables as well as
state diagrams.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 33

4. When we reach this stage, we use either the table or the state diagram to develop a
timing diagram which can be verified through simulation.

Stability:
 For a given set of inputs (i.e., values), the system is stable if the circuit eventually reaches
steady state and the excitation variables and secondary variables are equal and unchanging
(little y = capital y), otherwise the circuit is unstable.

 Fundamental Mode:
 A circuit is operating in fundamental mode if we assume/force the following restrictions on
how the inputs can change: 1. only one input is allowed to change at a time 2.the input changes
only after the circuit is stable.
Asynchronous circuits are identified by:

 The presence of combinatorial feedback paths, and/or
 The presence of un-clocked storage elements (i.e., latches).
 Analysis involves obtaining a table or diagram that describes the sequence of

internal states and outputs as a function of changes in the circuit inputs.
 The tables we will try to obtain are transition tables and Flow tables

Consider the following circuit that has combinatorial feedback paths (and is
therefore identified as asynchronous). No apparent latches in the circuit

Circuit has one input (x), one output (z), two secondary variables (y1, y2) and two excitation
variables (Y1, Y2).

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 34

 Write logic equations for the excitation variables in terms of the circuit inputs and secondary
variables:

Write logic equations for circuit outputs in terms of the circuit inputs and secondary variables:

Transition Table:
Using these equations, we can write a transition table that shows excitation variables and
outputs as a function of inputs and secondary variables:

Note that stable states (secondary variables equal to excitation variables) are
circled.
We can also create a flow table, which is just the transition table with binary numbers replaced
with symbols (e.g., let a = 00, b = 01, c = 10 and d = 11):

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 35

Analysis Example –Flow Table Alternative
Another way to draw a flow table:

Left-most column shows current state (secondary variables), and the inputs are listed across
the top. Entries in the matrix show the next state (excitation variables) and output values.

Primitive Flow Tables
Flow table with only one stable state per row is called a primitive flow table. E.g., a primitive
flow table:

E.g., a flow table that is not a primitive flow table:

Flow table: analogous to the state table
Example: Consider a sequential circuit with two inputs x1 and x2 and one
output z. The initial input state is x1 = x2 = 0. The output value is
to be 1 if and only if the input state is x1 = x2 = 1 and the
preceding input state is x1 = 0, x2 = 1

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 36

Reduction Of Flow Tables:
Reduction of primitive flow table has two functions:
• Elimination of redundant stable states
• Merging those stable states which are distinguishable by input states
Example: Rewrite primitive flow table like a state table

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 37

Specifying the Output Symbols
Assignment of output values to the unstable states in the reduced flow table • When the circuit
is to go from one stable state to another stable state associated with the same output value:
assign the same output value to the unstable state en route to avoid a momentary opposite
value • When the state changes from one stable state with a given output value to another
stable state with a different output value: the transition may be associated with either of these
output values – When the relative timing of the output value change is of no importance:
choose the output value so as to minimize logic.

Excitation and Output Tables

Synthesis procedure for SIC fundamental-mode asynchronous circuits:
1. Construct a primitive flow table from the verbal description: specify only those output values
that are associated with stable states
2. Obtain a minimum-row reduced flow table: use either the merger graph or merger table for
this purpose
3. Assign secondary variables to the rows of the reduced flow table and construct excitation
and output tables: specify output values associated with unstable states according to design
requirements

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 38

4. Derive excitation and output functions, and the corresponding hazard-free Circuit

Example: Design an asynchronous sequential circuit with two inputs, x1 and x2, and two
outputs, G and R, as follows.
• Initially, both input values and both output values are 0
• Whenever G = 0 and either x1 or x2 becomes 1, G becomes 1
• When the second input becomes 1, R becomes 1
• The first input value that changes from 1 to 0 turns G equal to 0
• R becomes 0 when G is 0 and either input value changes from 1 to 0

Analysis Summary
Procedure to determine transition table and/or flow table from a circuit with combinatorial
feedback paths:

 Determine feedback paths.
 Label Y (excitation variables) at output and y (secondary variables at input).
 Derive logic expressions for Y (excitation variables) in terms of circuit inputs and secondary

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 39

variables. Do the same for circuit outputs.
 Create a transition table and flow table.
 Circle stable states where Y (excitation variables) are equal to y (secondary variables).

Latch Analysis
We can use the previous analysis technique to see how latches work…

 We will consider SR (built with NOR gates) and S’R’ (built with NAND gates)
Latches.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 40

Note: We can see the undesirable case when SR=11 and inputs change.

 Depending on the various delays and assuming SR=11 ! SR=00…
 If SR=11 -> SR=10 -> SR=00, we get stable state with output of 1.
 If SR=11 -> SR=01 -> SR=00, we get stable state with output of 0.
 So the stable state is unpredictable.

Analysis With Latches
We might have asynchronous circuits with latches in them: We identify two inputs (x1,x2), two
excitation variables (Y1,Y2), two secondary variables (y1,y2)and two latches.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 41

Derive the transition table.

 We need to find the excitation equations in terms of secondary variables and the
circuit inputs.

 To do this, we need to use the latch equations:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 42

Analysis Summary With Latches
Label each latch output with Yj and its feedback path with yj.

 Derive logic equations for latch inputs Sj and Rj.
 Check of SR=0 for NOR Latches and S’R’=0 for NAND Latches. If not satisfied, the circuit

may not work correctly.
 Create logic equations for latch outputs Yj using the known behavior of a latch (Y=S+R’y

for NOR Latches and Y=S’+Ry for NAND Latches).
 Construct a transition table using the logic equations for the latch outputs and circuit stable

states.
 Obtain a flow table, if desired.

Asynchronous Circuit Design
Given verbal problem description:

 Obtain a primitive flow table (one stable state per row) from problem
description.

 Reduce the flow table to get a smaller flow table with less states.
 Perform state assignment (need to avoid race conditions) to obtain a transition

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 43

table.
 Obtain next state and output equations (need to avoid hazards and glitches).
 Draw circuit (with or without latches).

Design Example
Consider a circuit with two inputs, D and G and one output, Q. Output Q follows D
with G=1, otherwise Q holds its value.

 Assume fundamental mode operation – only one input changes at a time

Design Example – Reduced Flow Table
For the moment, assume that the following flow table will also work for the verbal problem
description – assume (a,c,d) and (b,e,f) can be merged.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 44

Design Example - State Assignment and Transition Table
We only have two states, so we can let a=0, and b=1.
Our transition table becomes:

Design Example - Logic Equations
We can make K-Maps to determine excitation variables (Y) and output (Z) in terms
of circuit inputs and secondary variables (y):

Output equal to the secondary (state) variable.
Can finally draw the circuit:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 45

Implementation Using Latches
We can also implement asynchronous circuits using latches at the outputs.

 Given the map for each excitation variable Y, derive necessary equations for S and R
of a latch to produce Y.

 Derive Boolean equations for S and R.
 Need to make sure the S and R never have equal (potential problem in Latch).

Implementation Using Latches – SR Latch Excitation Table

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 46

Implementation Using Latches

Output Assignment
Flow and transition tables might have unspecified entries for circuit outputs.

 This might be a result of the fundamental mode assumption.
 This might be a result of unstable states.
 Note: output values always assigned for stable states!
 We should think about the correctness of these unspecified don’t care output

Values.
 We might temporarily pass through these values while transitioning from one

stable state to another stable state.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 47

Example:
Consider the following flow table with don’t cares at some outputs (circuit has one
input and one output):

We _might_ consider using the un-specified output values as don’t cares in order to minimize
the logic function for the output. We need to be careful with output don’t cares in
asynchronous design.

 Consider start and stop STABLE STATES due to a change in input value.
 If both stable states produce a 0 output, make output 0 instead of a don’t

care.
 If both stable states produce a 1 output, make output 1 instead of a don’t

care.
 If stable states produce different outputs, the output can remain a don’t care

and be used to find a smaller output circuit.
 We do this to avoid GLITCHES in the output (e.g., if the output should go 0->0 (or

1->1), it should remain 0 (or 1) during the transition through an unstable state.

Example:
Recall the flow table… If we consider possible transitions, we see that some of the
output don’t cares should be changed to 0 or 1 to avoid GLITCHES.

The above changes will avoid temporary glitches at the outputs during transitions
where the output should not change.

Fundamental Mode Circuit Design

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 48

Design a fundamental mode sequential circuit with two inputs X2and X1.The single output Z is
to be 1 only when X2X1= 11, provided that this is the third of a sequence of input combinations
00 10 11. Otherwise, the output is to be 0. The design must be sure of no spurious 1 outputs
will occur during transitions between two states with 0 outputs. Both inputs will not change
simultaneously.

 X2X1=> 00 10 11 Z = 1

Fundamental Mode Circuit Design

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 49

What are Hazards ?

Hazards in any system are obviously an un-desirable effect caused by either a deficency in the
system or external influences. Logic hazards are manifestations of a problem in which changes
in the input variables do not change the output correctly due to some form of delay caused by
logic elements (NOT, AND, OR gates, etc.) This results in the logic not performing its function
properly. The three different most common kinds of hazards are usually referred to as static,
dynamic and function hazards. Hazards are a temporary problem, as the logic circuit will
eventually settle to the desired function. Therefore, in synchronous designs, it is standard
practice to register the output of a circuit before it is being used in a different clock domain or
routed out of the system, so that hazards do not cause any problems. If that is not the case,
however, it is imperative that hazards be eliminated as they can have an effect on other
connected systems.

Hazards in Combinational Logic

If the input of a combinational circuit changes, unwanted switching variations may appear in
the output. These variations occur when different paths from the input to output have
different delays. If, from response to a single input change and for some combination of
propagation delay, an output momentarily goes to 0 when it should remain a constant value
of 1, the circuit is said to have a static 1-hazard. Likewise, if the output momentarily goes to 1
when it should remain at a constant value of 0, the circuit is said to have a 0-hazard.

When an output is supposed to change values from 0 to 1, or 1 to 0, this output may change
three or more times; if this situation were to occur, the circuit is said to have a dynamic
hazard. Figure 1.1 shows the different outputs from a circuit with hazards. In each of the
three cases, the steady-state output of the circuit is correct, however, a switching variation
appears at the circuit output when the input is changed.

The first hazard in Figure 1.2, the static 1-hazard depicts that if A = C = 1, then F = B + B' = 1,
thus the output F should remain at a constant 1 when B changed from 1 to 0. However in the
next illustration, the static 0-hazard , if each gate has a propagation of 10 ns, E will go to 0
before D goes to 1, resulting in a momentary 0 appearing at output F. This is also known to
be a glitch caused by the 1-hazard. One should note that right after B changes to 0, both the

https://en.wikipedia.org/wiki/NOT_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/Flip-flop_(electronics)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 50

inverter input (B) and output (B') are 0 until the delay has elapsed. During this propagation
period, both of these input terms in the equation for F have value of 0, so F also momentarily
goes to a value of 0.These hazards, static and dynamic, are completely independent of the
propagation delays that exist in the circuit. If a combinational circuit has no hazards, then it is
said that for any combination of propagation delays and for any individual input change, that
output will not have a variation in I/O value. On the contrary, if a circuit were to contain a
hazard, then there will be some combination of delays as well as an input change for which
the output in the circuit contains a transient.

This combination of delays that produce a glitch may or may not be likely to occur in the
implementation of the circuit. In some instances it is very unlikely that such delays would
occur. The transients (or glitches) that result from static and dynamic timing hazards very
seldom cause problems in fully synchronous circuits, but they are a major issue in
asynchronous circuits (which includes nominally synchronous circuits that involve either the
use of asynchronous preset/reset inputs that use gated clocks).

The variation in input and output also depends on how each gate will respond to a change of
input value. In some instances, if more than one input gate changes within a short amount of
time, the gate may or may not respond to the individual input changes. One example in
Figure 1.2, assuming that the inverter (B) has a propagation delay of 2ns instead of 10ns.
Then input D and E changes reaching the output OR gate are 2ns from each other, thus the
OR gate may or may not generate the 0 glitch.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 51

A gate displaying this type of response is said to have what is known as an inertial delay.
Rather often the inertial delay value is presumed to be the same as the propagation delay of
the gate. When this occurs, the circuit above will respond with a 0 glitch only for inverter
propagation delays that are larger than 10ns. However, if an input gate invariably responds to
input change that has a propagation delay, is said to have an ideal or transport delay. If the
OR gate shown above has this type of delay, than a 0 glitch would be generated for any
nonzero value for the inverter propagation delay.

Hazards can always be discovered using a Karnaugh map. The map illustrated above in Figure
1.2, which not a single loop covers both minterms ABC and AB'C. Thus if A = C = 1 and B's
value changes, both of these terms can go to 0 momentarily; from this momentary change, a
0 glitch is found in F. To detect hazards in a two-level AND-OR combinational circuit, the
following procedure is completed:

A sum-of-products expression for the circuit needs to be written out.
Each term should be plotted on the map and looped, if possible.
If any two adjacent 1's are not covered by the same loop, then a 1-hazard exists for the
transition between those two 1's. For any n variable map, this transition only occurs when
one variable changes value and the other n 1 variables are held constant.

If another loop is added to the Karnaugh map in Fig. 1.2(a) and then add the
corresponding gate to the circuit in Figure 1.3 below, the hazard can be eliminated. The
term AC remains at a constant value of 1 while B is changing, thus a glitch cannot appear in
the output. With this change, F is no longer a minimum SOP.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 52

The above is a circuit with numerous 0-hazards. The function that represents the circuit's
output is:

F = (A + C)(A' + D')(B' + C' + D)

The Karnaugh map in Fig. 1.4(b) has four pairs of adjacent 0's that are not covered by a
common loop. The arrows indicate where each 0 is not being looped, and they each
correspond to a 0-hazard. If A = 0, B = 1, D = 0, and C changes from 0 to 1, there is a chance
that a spike can appear at the output for any combination of gate delays. lastly, Fig. 1.4(c)
depicts a timing diagram that, assumes a delay of 3ns for each individual inverter and a delay
of 5ns for each AND gate and each OR gate.

The 0-hazards can be eliminated by looping extra prime implicants that cover the 0's adjacent
to one another, as long as they are not already covered by a common loop. By eliminating
algebraically redundant terms, or consensus terms, the circuit can be reduced to the
following equation below. Using three additional loops will completely eliminate the 0-
hazards, resulting the following equation:

F = (A + C)(A' + D')(B' + C' + D)(C + D')(A + B' + D)(A' + B' + C')

This figure below illustrates the Karnaugh map after removing the 0-hazards.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 53

 In digital logic hazards are usually refered to in one of three ways:

 Static Hazards
 Dynamic Hazards
 Function Hazards


Static Hazards

A static hazard is the situation where, when one input variable changes, the output changes
momentarily before stabilizing to the correct value. There are two types of static hazards:

 Static-1 Hazard: the output is currently 1 and after the inputs change, the output
momentarily changes to 0,1 before settling on 1

 Static-0 Hazard: the output is currently 0 and after the inputs change, the output
momentarily changes to 1,0 before settling on 0

In properly formed two-level AND-OR logic based on a Sum Of Products expression, there will
be no static-0 hazards. Conversely, there will be no static-1 hazards in an OR-AND
implementation of a Product Of Sums expression.

The most commonly used method to eliminate static hazards is to add redundant logic
(consensus terms in the logic expression).

Let us consider an imperfect circuit that suffers from a delay in the physical logic elements i.e.
AND gates etc. The simple circuit performs the function noting:

f = X1 * X2 + X1' * X3

http://www.ee.surrey.ac.uk/Projects/Labview/Sequential/Course/02-Hazards/hazards.htm#Static
http://www.ee.surrey.ac.uk/Projects/Labview/Sequential/Course/02-Hazards/hazards.htm#DynamicHazards
http://www.ee.surrey.ac.uk/Projects/Labview/Sequential/Course/02-Hazards/hazards.htm#FunctionHazards

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 54

If we first look at the starting diagram, it is clear that if no delays were to occur, then the circuit
would function normally. However, no two gates are ever manufactured exactly the same. Due
to this imperfection, the delay for the first AND gate will be slightly different than its
counterpart. Thus an error occurs when the input changes from 111 to 011. i.e. when X1
changes state.

Now we know roughly how the hazard is occurring, for a clearer picture and the solution on
how to solve this problem, we would look to the Karnaugh map. The two gates are shown by
solid rings, and the hazard can be seen under the dashed ring. A theorem proved by
Huffman[1] tells us that by adding a redundant loop 'X2X3' this will eliminate the hazard.

So our original function is now: f = X1 * X2 + X1' * X3 + X2 * X3

Now we can see that even with imperfect logic elements, our example will not show signs of
hazards when X1 changes state. This theory can be applied to any logic system. Computer
programs deal with most of this work now, but for simple examples it is quicker to do the
debugging by hand. When there are many input variables (say 6 or more) it will become quite
difficult to 'see' the errors on a Karnaugh map.

Definition:- "When one input variable changes, the output changes momentarily when it
shouldn't"

This particular type of hazard is usually due to a NOT gate within the logic. We can see the
effects of the delay in the circuit from the following flash animation.

 The hazard can be dealt with in two ways:

1. Insert another (additional) delay to the circuit. This then eliminates the static hazard.
2. Eliminate the hazard by inserting more logic to counteract the effects (Note this makes

assumptions that the logic will fail)

The first case is the most used of the two options. This is because it does not make assumptions
about the logic, instead the method adds redundancy to overcome the hazard.

To solve the hazard we shall use our previous example and apply a theory that 'Huffman'
discovered.The insertion of a redundant loop can elimate a static hazard.

In the next example, it will also be evident that there will not be a situation where a static '0'
occurs. A static '0' hazard is one which briefly goes to '1' when it should remain at '0'. A static '1'
hazard is the reverse of this situation, i.e. the output should remain at '1' yet under some
condition it briefly changes state to '0' (something we shall see in the following example)..

Example of Static Hazards
The Static '1' Hazard.

https://en.wikipedia.org/wiki/Karnaugh_map
https://en.wikipedia.org/wiki/Hazard_(logic)#cite_note-1

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 55

Let us consider an imperfect circuit that suffers from a delay in the physical logic elements i.e.
AND gates etc.

Transition cube [m1,m2]: set of all minterms that can be reached from minterm m1 and ending
at minterm m2
Example: Transition cube [010,100] contains: 000, 010, 100, 110 Required cube: transition cube
that must be included in some product of
the sum-of-products realization in order to get rid of the static-1logic hazard
Example: Required cube is [011,111]

The simple circuit performs the function:

f = X1.X2 + X1'.X3 and the logic diagram can be shown as follows:

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 56

Now we know roughly how the hazard is occuring, for a clearer picture and the solution on how
to solve this problem, we look to the Karnaugh Map:

This Karnaugh Map shows the circuit. The two gates are shown by solid rings, and the hazard
can be seen under the dashed ring. The theory proved by Huffman tells us that by adding a
redundant loop 'X2X3' this will eliminate the hazard. So the resulting logic is of the form shown
in the next figure.

So our original function is now: f =X1.X2 + X1'.X3 + X2.X3

static-0 hazard

The output should be 0 but goes momentary to 1 as a result of an input change.A static-0
hazard occurs in OR-AND circuits when an input variable and its complement are connected to
two different OR gates.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 57

• The procedure to find and eliminate static-0 hazards using K-maps is done in a dual way to
finding static-1 hazards.
• Static-0 hazards are found using kmaps by finding adjacent 0 cells that are covered by
different sum terms.
• To eliminate static-0 hazards, additional sum terms (prime implicates) are needed to cover
such cells thus covering the transition of the variable causing the hazard.

\

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 58

static-1 hazard
 A static-1 hazard exists in the following AND-OR circuit when A = 1, C = 1 and B changes from 1
to 0 (assume all gates have propagation delay D):

Static-1 hazards are found using k-maps by finding
adjacent 1 cells that are covered by different product terms.

> To eliminate static-1 hazards,additional product terms (prime implicants) are needed to
coversuch cells thus covering the transition of the variable causing the hazard.>For in the

previous example the static-1 hazard is eliminated by including the additional product term AC
Grouping the adjacent 1's in the two

groups)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 59

Now we can see that even with imperfect logic elements, our example will not show signs of

hazards when X1 changes state. This theory can be applied to any logic system. omputer

programs deal with most of this work now, but for simple examples it is quicker to do the

debugging by hand. When there are many input variables (say 6 or moreDynamic Hazards

Definition:- "A dynamic hazard is the possibility of an output changing more than once as a
result of a single input change"

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 60

Dynamic hazards often occur in larger logic circuits where there are different routes to the
output (from the input). If each route has a different delay, then it quickly becomes clear that
there is the potential for changing output values that differ from the required / expected
output.
e.g. A logic circuit is meant to change output state from '1' to '0', but instead changes from '1'
to '0' then '1' and finally rests at the correct value '0'. This is a dynamic hazard.

As we shall see, dynamic hazards take a more complex method to resolve (which we shall not
cover). Let us explain this more with a slide show.

Function Hazards

Function hazards are non-solvable hazards which occurs when more than one input variable
changes at the same time. Hazards such as function hazards can not be logically eliminated as
the problem lies with actual specification of the circuit. The only real way to avoid such
problems is to restrict the changeing of input variables so that only one input should change at
any given time.Restrictions are not always possible, for instance let us imagine some logic
circuit that has two inputs. One input is used for a clock signal, and the other is connected to a
random noise source that we wish to measure. It should be clear that restrictions in this case
would not be an effective solution.

The simplest example of this is the exclusive-or function.

In this scenerio it is quite difficult to see how a hazard could occur if the circuit is built up on the
same couple of chips. However let us imagine that some circuit designer has split this function
across different chips (i.e. one NOT gate on one chip and the other NOT gate is implemented on
another chip across the PCB somewhere)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 61

Let us setup the initial state of our circuit. A = 1, B = 0. Now lets say there is a delay in the NOT
gate marked (X). The inputs now change simultaneuoulsy so that A = 0 and B = 1 (remember in
a equally delayed circuit or a perfect circuit, the circuit output would match the specification).
If we observe what the circuit should do, and do not change the output of the NOT gate X (this
simulates a delay in gate X), it should be clear that the output of the circuit changes. Now we
change the output of NOT gate X and the circuit goes back to the proper state.

The most effective way to solve this hazard would be to carefully design the PCB so that delays
are all equal, or at least match the delays on each path. i.e. Delay of A's path = Delay of B's path.
Yet adding more gates to the circuit by the same methods as descibed in dynamic and static
hazards will not work as Huffmans method cannot be applied.

http://www.ee.surrey.ac.uk/Projects/Labview/Sequential/Course/02-Hazards/hazards.htm#Huffman

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 62

UNIT III

Digital Design

Programmable Logic Devices
Read Only Memory (ROM) - a fixed array of AND gates and a programmable array of OR gates
_ Programmable Array Logic (PAL) - a programmable array of AND gates feeding a fixed array of
OR gates.
_ Programmable Logic Array (PLA) - a programmable array of AND gates feeding a programmable
array of OR gates.
_ Complex Programmable Logic Device (CPLD) /Field- Programmable Gate Array (FPGA) -
complex enough to be called “architectures”

READ ONLY MEMORY
_ Read Only Memories (ROM) or Programmable Read Only Memories (PROM) have:
• N input lines,
• M output lines, and
• 2N decoded minterms.
_ Fixed AND array with 2N outputs implementing all N-literal minterms.
_ Programmable OR Array with M outputs lines to form up to M sum of minterm expressions.
_ A program for a ROM or PROM is simply a multiple-output truth table
• If a 1 entry, a connection is made to the corresponding minterm for the corresponding
output

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 63

• If a 0, no connection is made
_ Can be viewed as a memory with the inputs as addresses of data (output values), hence ROM or
PROM names!

Depending on the programming technology and approaches, read-only memories have different
names
1. ROM – mask programmed
2. PROM – fuse or antifuse programmed
3. EPROM – erasable floating gate programmed
4. EEPROM or E2PROM – electrically erasable floating gate programmed
5. FLASH memory: electrically erasable floating gate with multiple erasure and programming
modes.
_ Example: A 8 X 4 ROM (N = 3 input lines, M= 4 output lines)
• The fixed "AND" array is a “decoder” with 3 inputs and 8 outputs implementing minterms.
• The programmable "OR“ array uses a single line to represent all inputs to an OR gate. An
“X” in the array corresponds to attaching the minterm to the OR
• Read Example: For input (A2,A1,A0) = 011, output is (F3,F2,F1,F0) = 0011.
• What are functions F3, F2 , F1 and F0 in terms of (A2, A1, A0)?

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 64

PROGRAMMABLE LOGIC ARRAY (PLA)

A programmable logic array (PLA) is a kind of programmable logic device used to implement combinational
logic circuits. The PLA has a set of programmable and gate planes, which link to a set of programmable or
gateplanes, which can then be conditionally complemented to produce an output. It has 2^n and gates for n
input variables and for m outputs from PLA, there should be m or gates, each with programmable inputs
from all of the and gates. This layout allows for a large number of logic functions to be synthesized in the sum
of products canonical forms. PLAs differ from programmable array logic devices (pals and gals) in that both
the and and or gate planes are programmable.

PLA schematic example

https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Electrical_network
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/Canonical_form_(Boolean_algebra)
https://en.wikipedia.org/wiki/Programmable_Array_Logic
https://en.wikipedia.org/wiki/Programmable_Array_Logic
https://en.wikipedia.org/wiki/Generic_array_logic

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 65

Compared to a ROM and a PAL, a PLA is the most flexible having a programmable set of ANDs
combined with a programmable set of ORs.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 66

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 67

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 68

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 69

Advantages
• A PLA can have large N and M permitting implementation of equations that are impractical
for a ROM (because of the number of inputs, N, required
• A PLA has all of its product terms connectable to all outputs, overcoming the problem of
the limited inputs to the PAL Ors
• Some PLAs have outputs that can be complemented, adding POS functions
_ Disadvantages
• Often, the product term count limits the application of a PLA.
• Two-level multiple-output optimization is required to reduce the number of product terms
in an implementation, helping to fit it into a PLA.
• Multi-level circuit capability available in PAL not available in PLA. PLA requires external
connections to do multi-level circuits.
Programmable Logic Array Example
F1=AB’ + AC + A’BC’
F2= (AC+BC)’

Example:Implementing a Combinational Circuit Using a PLA
F1(A,B,C)= Σm(3,5,6,7)
F2(A,B,C)= Σm(1,2,3,7)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 70

PROGRAMMABLE ARRAY LOGIC (PAL)

The PAL is the opposite of the ROM, having a programmable set of ANDs combined with fixed
ORs. A given column of the OR array has access to only a subset of the possible product terms

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 71

_ Disadvantage
• ROM guaranteed to implement any M functions of N inputs. PAL may have too few inputs
to the OR gates.
_ Advantages
• For given internal complexity, a PAL can have larger N and M
• Some PALs have outputs that can be complemented, adding POS functions
• No multilevel circuit implementations in ROM (without external connections from output
to input). PAL has outputs from OR terms as internal inputs to all AND terms, making
implementation of multi-level circuits easier.
Programmable Array Logic Example
_ 4-input, 3-output PAL with fixed, 3-input OR terms
_ What are the equations for F1 through F4? W(A,B,C,D) = Σm (2,12,13)
X(A,B,C,D) = Σm (7,8,9,10,11,12,13,14,15)
Y(A,B,C,D) = Σm (0,2,3,4,5,6,7,8,10,11,15)
Z(A,B,C,D) = Σm (1,2,8,12,13)
Simplifying the four function to a minimum number of terms results in the following Boolean
functions
W= ABC’+A’B’CD’
X = A+BCD
Y = A’B+CD+B’D’
Z = ABC’+A’B’CD’+AC’D’+A’B’C’D = W+AC’D’+A’B’C’D

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 72

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 73

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 74

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 75

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 76

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 77

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 78

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 79

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 80

Adder Design

A ripple-carry adder works in the same way as pencil-and-paper methods of addition. Starting at the

rightmost (least significant) digit position, the two corresponding digits are added and a result

obtained. It is also possible that there may be a carry out of this digit position (for example, in

pencil-and-paper methods, "9+5=4, carry 1"). Accordingly, all digit positions other than the

rightmost need to take into account the possibility of having to add an extra 1, from a carry that has

come in from the next position to the right.

This means that no digit position can have an absolutely final value until it has been established

whether or not a carry is coming in from the right. Moreover, if the sum without a carry is 9 (in

pencil-and-paper methods) or 1 (in binary arithmetic), it is not even possible to tell whether or not a

given digit position is going to pass on a carry to the position on its left. At worst, when a whole

sequence of sums comes to ...99999999... (in decimal) or ...11111111... (in binary), nothing can be

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 81

deduced at all until the value of the carry coming in from the right is known, and that carry is then

propagated to the left, one step at a time, as each digit position evaluated "9+1=0, carry 1" or

"1+1=0, carry 1". It is the "rippling" of the carry from right to left that gives a ripple-carry adder its

name, and its slowness. When adding 32-bit integers, for instance, allowance has to be made for

the possibility that a carry could have to ripple through every one of the 32 one-bit adders.

Carry lookahead depends on two things:

1. Calculating, for each digit position, whether that position is going to propagate a carry if one

comes in from the right.

2. Combining these calculated values to be able to deduce quickly whether, for each group of

digits, that group is going to propagate a carry that comes in from the right.

Supposing that groups of four digits are chosen. Then the sequence of events goes something like

this:

1. All 1-bit adders calculate their results. Simultaneously, the lookahead units perform their

calculations.

2. Suppose that a carry arises in a particular group. Within at most five gate delays, that carry

will emerge at the left-hand end of the group and start propagating through the group to its

left.

3. If that carry is going to propagate all the way through the next group, the lookahead unit

will already have deduced this. Accordingly, before the carry emerges from the next group,

the lookahead unit is immediately (within one gate delay) able to tell the next group to the

left that it is going to receive a carry – and, at the same time, to tell the next lookahead unit

to the left that a carry is on its way.

The net effect is that the carries start by propagating slowly through each 4-bit group, just as in a

ripple-carry system, but then move four times as fast, leaping from one lookahead carry unit to the

next. Finally, within each group that receives a carry, the carry propagates slowly within the digits in

that group.

The more bits in a group, the more complex the lookahead carry logic becomes, and the more time

is spent on the "slow roads" in each group rather than on the "fast road" between the groups

(provided by the lookahead carry logic). On the other hand, the fewer bits there are in a group, the

more groups have to be traversed to get from one end of a number to the other, and the less

acceleration is obtained as a result.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 82

Deciding the group size to be governed by lookahead carry logic requires a detailed analysis of gate

and propagation delays for the particular technology being used.

It is possible to have more than one level of lookahead carry logic, and this is in fact usually done.

Each lookahead carry unit already produces a signal saying "if a carry comes in from the right, I will

propagate it to the left", and those signals can be combined so that each group of (let us say) four

lookahead carry units becomes part of a "supergroup" governing a total of 16 bits of the numbers

being added. The "supergroup" lookahead carry logic will be able to say whether a carry entering

the supergroup will be propagated all the way through it, and using this information, it is able to

propagate carries from right to left 16 times as fast as a naive ripple carry. With this kind of two-

level implementation, a carry may first propagate through the "slow road" of individual adders,

then, on reaching the left-hand end of its group, propagate through the "fast road" of 4-bit

lookahead carry logic, then, on reaching the left-hand end of its supergroup, propagate through the

"superfast road" of 16-bit lookahead carry logic.

Again, the group sizes to be chosen depend on the exact details of how fast signals propagate

within logic gates and from one logic gate to another.

For very large numbers (hundreds or even thousands of bits), lookahead carry logic does not

become any more complex, because more layers of supergroups and supersupergroups can be

added as necessary. The increase in the number of gates is also moderate: if all the group sizes are

four, one would end up with one third as many lookahead carry units as there are adders. However,

the "slow roads" on the way to the faster levels begin to impose a drag on the whole system (for

instance, a 256-bit adder could have up to 24 gate delays in its carry processing), and the mere

physical transmission of signals from one end of a long number to the other begins to be a problem.

At these sizes, carry-save adders are preferable, since they spend no time on carry propagation at

all.

A carry-lookahead adder (CLA) or fast adder is a type of adder used indigital logic. A carry-

lookahead adder improves speed by reducing the amount of time required to determine carry bits.

It can be contrasted with the simpler, but usually slower, ripple carry adder for which the carry bit is

calculated alongside the sum bit, and each bit must wait until the previous carry has been

calculated to begin calculating its own result and carry bits (see adder for detail on ripple carry

adders). The carry-lookahead adder calculates one or more carry bits before the sum, which

https://en.wikipedia.org/wiki/Carry-save_adder
https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Digital_logic
https://en.wikipedia.org/wiki/Ripple_carry_adder
https://en.wikipedia.org/wiki/Adder_(electronics)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 83

reduces the wait time to calculate the result of the larger value bits. The Kogge-Stone

adder and Brent-Kung adder are examples of this type of adder.

https://en.wikipedia.org/wiki/Kogge-Stone_adder
https://en.wikipedia.org/wiki/Kogge-Stone_adder
https://en.wikichip.org/wiki/Brent-Kung_adder

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 84

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 85

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 86

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 87

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 88

 64BIT

ADER

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 89

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 90

Unit-IV

Faults in Digital Circuits

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 91

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 92

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 93

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 94

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 95

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 96

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 97

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 98

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 99

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 100

path sensitization method

Fault sensitization: In this step a stuck-at fault is activated by setting the signal driving the faulty net to an
opposite value from the fault value.

1. Fault propagation: In this step a path is selected from the fault site to some primary output, where
the effect of the fault can be observed for its detection.

2. Line justification: In this step the signals in (internal) nets or some primary inputs, which were
assigned for fault sensitization/propagation, are justified by setting (remaining) primary inputs of the circuit.

In the second and third steps, a conflict may occur, where a necessary signal assignment contradicts some
previously-made assignment. When conflicts occur we need to take a new alternative path for fault
propagation and see if all signals can be justified.
We have seen some simple examples for ATPG using the path sensitization (sensitization-propagation-
justification) approach in the last module. Now we will see a bit more complex example of ATPG using the
path sensitization approach. However, instead of using Boolean algebra (as in last module), we will use Roth’s

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 101

5 valued algebra. Following that, in the next lecture we will learn D-algorithm--the primary and formal
algorithm for ATPG using path sensitization.

As shown in Figure 4 (a), there is a s-a-0 fault in input b. To sensitize the fault, simply b is to be made 1. Now
let us take the path “e-f-g-h” for propagating the effect to the output h. The signals in the nets of the path, in
terms of Roth’s 5 valued algebra, are shown in Figure 4(a). It may be noted that we have successfully

propagated to the output; it implies that the fault can be propagated to the output using the path
selected. Now let us justify the signals, by setting the inputs of the gates in the path selected (for fault
propagation), but not themselves being in the path, to non-controlling values. For example, net j, is a input to
the OR gate that is in the path selected for fault propagation, but j is not itself in the path; so j is to be 0.
Similarly, d is to be 1, and a is to be 1. However, it must be noted that j cannot be made 0;
if c=1 then j =D and if c = 0then j = 1. So we have reached a conflict at j; Figure 4(b). Now we must backtrack
and select a new path for propagation.

Figure 4. Illustration of backtrack in path sensitization based ATPG

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 102

Figure 5 shows the ATPG if the new path is “i-j-g-h”. Figure 5 (a) shows the values in the nets required to
propagate the fault to the output. In the new path we have again successfully propagated the fault to the

output, but now a D is obtained instead of (as in the previous case}. This implies that the fault can be
propagated to the output using the new path, however, the reflection of the effect is reversed. To justify the
signals, we require d=1, c=1, f=0. f=0 is easily obtained by setting a=0. So we have successfully, justified the
signals if the path is “i-j-g-h”; test pattern is a=0,b=1,c=1, d=1 and effect at output is D.

Figure 5. Successfully found test pattern in an alternative path (circuit of Figure 4)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 103

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 104

Boolean Difference method

Conceptual View of ATPG

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 105

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 106

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 107

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 108

Unit V

SM Charts

Algorithmic State Machines:

 The binary information stored in the digital system can be classified as either data or control information.

 The data information is manipulated by performing arithmetic, logic, shift and other data processing
tasks.

 The control information provides the command signals that controls the various operations on the data in
order to accomplish the desired data processing task.

 Design a digital system we have to design two subsystems data path subsystem and control subsystem.

ASM CHART:

 A special flow chart that has been developed specifically to define digital hardware algorithms is called
ASM chart.

 A hardware algorithm is a step by step procedure to implement the desire task.

Difference b/n conventional flow chart and ASM chart:

 conventional flow chart describes the sequence of procedural steps and decision paths for an algorithm
without concern for their time relationship

 An ASM chart describes the sequence of events as well as the timing relationship b/n the
states of sequential controller and the events that occur while going from one state to the
next

Basic Components of ASM charts

Following are the three basic components of ASM charts.

 State box
 Decision box

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 109

 Conditional output box

State box

State box is represented in rectangular shape. Each state box represents one state of the
sequential circuit. The symbol of state box is shown in the following figure.

It is having one entry point and one exit point. Name of the state is placed to the left of state
box. The unconditional outputs corresponding to that state can be placed inside state box.
Moore state machine outputs can also be placed inside state box.

Decision box

Decision box is represented in diamond shape. The symbol of decision box is shown in the
following figure.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 110

It is having one entry point and two exit paths. The inputs or Boolean expressions can be placed
inside the decision box, which are to be checked whether they are true or false. If the condition
is true, then it will prefer path1. Otherwise, it will prefer path2.

Conditional output box

Conditional output box is represented in oval shape. The symbol of conditional output box is
shown in the following figure.

It is also having one entry point and one exit point similar to state box. The conditional outputs
can be placed inside state box. In general, Mealy state machine outputs are represented inside
conditional output box. So, based on the requirement, we can use the above components

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 111

properly for drawing ASM charts.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 112

Binary Multiplier:

Data path subsystem for binary multiplier

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 113

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 114

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT OF ECE

DIGITAL SYSTEM DESIGN Page 115

	Finite State Machines
	Mealy State Machine
	Moore State Machine

	UNIT -II
	Fundamental mode model
	Analysis-of-Sequential-Circuits
	What are Hazards ?

	Hazards in Combinational Logic
	Now we can see that even with imperfect logic elements, our example will not show signs of hazards when X1 changes state. This theory can be applied to any logic system. omputer programs deal with most of this work now, but for simple examples it is q...
	Function Hazards
	Basic Components of ASM charts
	State box
	Decision box
	Conditional output box

